

LECTURE SERIES ON NUCIEAR PHYSICS

First Series: TEFMINOLOGY; Lecturer: E』M\& MCMIILAN,IFCTURE I: The Atom and the Nucleus I
" II: Interaction of Iight with Matter 8
" IIf: Forces Holding the Nuclei Together 17
\# IV: Reactions Between Nuclei 24
" V: Radioactivity 32a
" VI: I) (ζ-Decay; II) Neutron Reactions 39
" VII: Nuclear Fission 42
Second Series: RADIOACTIVITY; Lecturers: E. Segre 48
E. Teller F. Bloch
LECTURE VIII: The Radioactive Decay Law 48
" IX: I, The Radioactive Decay Lrw (Cont'd). II. Fluctuations. III. Passage Through Matter 55

* X: -Particles and Their Interactions with Matter 62
" XI: The Theory of Stopping Power 66
" XII: The Theory of Stopping Power (Cont'd) 72
" XIII: Interaction of Charged Particles with Matter 80
" XIV: Interaction of Radiations with Matter 83
" XV: The Properties of Nuclei 87
" XVI: Survey of Stable Nucleus 92
" XVII: Theory of Alpha Disintegration. Theoryof Beta Particles100
" XVIII: I. Positron Emission and K capture. II. Gamma Radiation 105

CORRECTIONS

p. 241 - Equation 48 should read

$$
\sigma(\alpha, \beta)=\pi x^{2}\left|\sum_{n} \frac{\gamma_{\alpha c l}^{n} \gamma_{n}^{n} / \ell^{\prime}}{\epsilon-\epsilon_{n}+i \delta / 2} e^{i \phi_{\alpha \beta}}+f(\epsilon)\right|^{2}
$$

p. 254 - Missing only because of an error in numbering and not because of censorship.
p. 276 - Equation sat top of page should read

$$
\sigma(n, \gamma)=\zeta(440 / \sqrt{\epsilon}) \text { for } \epsilon<10^{4}
$$

Third Series: NEUTRON PFYSICS; Lecturer: J.H. Williams; Page 108
LECTURE XIX: Discovery of the Neutron 108
" XX: Neutron Sources (cont'd)
Typical Reactions for Production of Neu- trons 114
" XXI: Properties of SIow Neutrons 119
" XXII: Properties of Slow Neutrons (Cont'd) 125
" XXIII: Fast Neutrons 135
" XXIV: Properties of Fast Neutrons Cross Section Measurements 146
Fourth Series: TNO BODY PROBLEM; Lecturer: C.I.Critchfield; Page 153
LTCTURE XXV: Nuclear Constants 153
" XXVI: Neutron-Proton Interaction 162
" XXVII: I) Spin-Spin Forees in the Deuteron II) Proton-Proton Scattering 168
" XXVIII: Three Body Problems 178
" XXIX and XXX: Interaction of Neutron and Proton with Fields 185
Fifth Series: THE STATISTICAL THEORY OF NUCLEAR REACTIONS; Lecturer: V. F. WWeisskopf Page 207
LECTURE XXXI: Introduction 207
" XXXII: Qualitative Treatment 210
" XXXIII: Cross Sections and Emission Probabilities 218
" XXXIV: The Excited Nucieus 227
" XXXV: Resonance Processes 237
" XXXVI: Non-Resonance Processes 255
Sixth Series: Diffusion The ory; Lecturer: R. F. Christy; Page 287 LECTURE XXXVII: Diffusion Equations and Point Source Solutions 287
" XXXVIII: Point Source Problems and Albedo 292
IECTURE XXXIX: The Slowing Down of Neutrons Page 304
11 XI: The Slowing Down of Neutrons in Water 315
M XII: The Boltzmann Equation: Corrections to Diffusion Theory 323

IA 24 (1)

September 14, 1943.

LECTURE SERIES ON NUCIEAR PHYSICS

FIRST SERIES: TERMINOLOGY
IECTURER: E. M. MCM ILILA
IECTUPS I: THE ATGM AND THE NUCLEUS

We consider a plece of matter, for instance copper. If we magnify it, we first see that it consists of crystalites. They in turn are regularly arranged arrays of atoms. In the special case of copper, the geometrical arrangement is the same as a close packed arrangement of spheres, the atoms in one plane making the following pattern:

At the center of each atom there is nucleus. Of course, the picture is not really like the one drawn. The electrons fill the whole space, there are no boundaries, the atoms actually overlap, their limits are fuzzy. In a metal like copper it is not even clear which electron belongs to which atom. In an insulator, for instance the noble gas Argon, each atom holds on to its own electrons and each electron belongs to a definite atom. In a chemical compound, for instance carbon doxide, the electros are shared by the atoms belonging to one molecule, but each molecule has its own electrons. All the chemical properties of the atoms are determined by the outer electrons.

The question arises what effect the nucleus has on the behavior of the atom. The effect of the nucleus is due to its electilc charge. This charge is an integral multiple of the
positive charge which is of the same magnitude as the charge of the electron. Atoms must be neutrel because a positive charge would result in the attraction of more electrons, whereas a negatlve charge would cause the atoms to lose electrons. Each atom has enough (negatively charged) electrons to compensate the nuclear charge. This number of electrons is also called the atomic number and dotermines the chemical properties of the atom. Another significant property of the atomic nucleus is the nucleus mass. This mass is much greater than the mass of the electrons. Even the lightest nucleus, namely of hydrogen, is 1840 times heavier than that of an electron. Thus the mass of matter Is essontially concentrated in the nuclei. The mass of the nucleus depends in first approximation on the number of neutrons and protons within the nucleus. The neutrons and protons have approximately equal mass but this equality does not hold as exactiy as the equality of positive and negative charges within an atom. The protons carry one unit of positive charge. The neutrons are uncharged. The charge of the nucleus, that is the atomic number, is equal to the number of protons in the nucleus. The total weight of the nucleus on the other hand, is roughly equal to the woight of a proton (or a neutron) multiplied by the total number of neutrons and protons within the nucleus. This number is callod the mass number. Thus if two nuclei have the same charge, it does not mean that they have the same nass number because a given number of protons might be associated with a different number of noutrons in different nuclei. If two nuclei have the same number of protons they will belong to the same chemical element (atomic species) but if, at the same time they have a
different number of neutrons they will be different isotopes. For instance hydrogen has different kinds of isotopes. Every hydrogen nucleus has one proton but it may have 0,1 or 2 noutrons. There extst many more nuclear species then atomic species. In order to designate the nuclear species wo writo the atomic symbol, for instance H in the case of hydrogen. This alroady implies what the nuclear charee is and thereforo shows how many protons are found in the nucleus. The mass number of the nuclous is shown by an uppor findex. The following table gives the number of neutrons and protons for the known hydrogon and helium isotopes:
numbor of protons number of neu-

1
trons
H^{2}
H^{3}
1
1
He^{3}
He^{4}
$H_{0}{ }^{6}$
2

0

1
2
1
2
4

The approximate size of an atom is $10^{-8} \mathrm{~cm}$. Different atomic spocies have different size but the total variation in size is not more then a factor of ton times. One may visualize the size of an atom by oxpanding our scale of moasuroments in such a wey that 1 cm . will appear as 1,000 miles. Then an atom will be about 1 cm . In radius. The size of the atomic nucleus is about $10^{-13} \mathrm{~cm} .$, that is, about 10^{5} times smaller than the atom. The distance betwoen the sun and earth is about 100 times the radius of the sun. Thus the nucleus is relatively much smaller from the point of view of its outer electrons than the sun as viowed from the carth.

It was stated that the lightest nucleus is about 2,000 times heavier than an electron. No know that in 1 am . of hydrogen there are 6×10^{23} atoms, therefore tho mass of one hydrogen nucleus is $1 / 6 \times 10^{-23}$ grams.

Before turning to the dimension of the electron, we shall discuss the peculiar difficulty which arises in connection with visualizing tho electrons within tho atoms. It is often stated that an atom is like a solar system. The atom of iron for instance has 26 electrons. Can we measuro these as in motion in approximatoly olliptical orbits around tho nucleus? If we should take microscope of vory high power and rosolution and take a photograph of the inside of an atom at a eiven instance, one would find a disorderly arrangoment of olectrons within the atom. One might then try to tako anothor photograph a very short time later In order to find the motion of tho eloctrons within their orbits. If such a photograph is takon no relation is discoverod betwoon the positions in the two consocutive pictures. Actually if the rosolving power of tho microscopo would have boon infinity, the second picture would havo been blank. Tho reason for this situation is that the light which is used in taking the picturos carries momentum and one cannot thorofore take a photograph without giving a kick to the cloctrons. If good rosolving power is wanted, you must use light of very short wave length and such Heht carrios particularly high momentum. One might try to . compromiso in following tho orbit of the eloctrons by using a lowor rosolving power and hoping that in this way tho volocity of the oloctrons will not bo too much disturbod in taking a
photograph but the quantitative situation is such that the necossary uncertaintios in position and momentum aro just big onough to make it impossiblo to defino orbits within atoms.

This conclusion is a consequence of quantum mochanics. Quantum mochanics is the mechanics that applies to all bodios, for instance to a tennis ball, but in the case of a large body Iike a tennis ball the laws of quantum mochanics approach the laws of classical mechanics so closely that the two becomo practically undistinguishable. The word quantum moans amount and occurs in the designation quantum mechanics boceuse many of the characteristic laws of quantum mechanics are associated with the fact that cortain quantitios appoar in amounts that are multiplos of a given charactoristic amount. Tho most basic of these quantitios is the so-called "quantum of action" which is designated by h. This quantity has the dimension of a distance timos the momontum. h is the measure of the limitation on measurement. If the position of a particlo (i.e. its distance from a reforonco systom) is well known, then little can be known about its momentum and vice vorsa. If the momentum is known the position must bo unknown. The product of the uncertaintios in momentum and position is of the magnitude h. For a big mass this uncortainty doos not moan much. This is so because the momentum is a product of mass and velocity and if tho mass is big, the uncertainty in the velocity becomes correspondingly small, but for the lightest particlos, the Gloctrons, the uncortainty of momentum causes such an uncortainty In velocity that to define anything like an orbit for an electron becomes impossible, The only statements that wo can make about the position of electrons in an atom are of a statistical nature.

One might for instance take many instantaneous photographs of a certain kind of atom in tho way doscribod above, one might thon suporimpose theso photographs and we thon find that the oloctron position will distribute itself more in cortain rogions (noar tho nucious) than in othor rogions. Such a picturo givos an idoa of the probable donsity of tho electrons inside the atom, i.c. the probablifty with which tho oloctrons can be found in tho various volumo elemonts insido tho atom.

The description just given might induce ono to say that an olectron is as big as the wholo atom. Howover, in an individual measurement the position of an eloctron may be more sharply dofined and in fact eloctrons do have thoir own radif which aro much smaller then the atomic radius. Tho concopt of the oloctron radius can be undorstood by considoring the oloctric ficld of an olectron. This cloctric fiald is according to the Coulomb Law inversely proportional to the square of tho alstanco from the olectron. If the oloctron were a point, the fiold near the electron would bo infinito. It is not boliovod that such infinite fiolds can oxist and it is assumed that at somo givon distance from the cloctron, the Coulomb Law ceases to hold. This distance has been ostimated as about $10^{-13} \mathrm{~cm}$. That is tho oloctron radius and the nuclear radil are of comparable size. of course, the position of tho nucled is not quito so hard to defino as the position of electrons duc to the fact that tho nuclol havo much bigger mass and according to that reasoning uncertaintios In their momenta, will not causo vory groat uncortaintics in their volocities and will not wash out thoir orbits to the same extent as those of tho olectrons.

In some of the applications of quantum mechanics which we shall encounter later, the wave lengths associated with particles will play a fundamental role. One length associated with a given particle is $h / m v(h=q u a n t u m$ of action; $m=$ mass of par-
 length is actually equal to the uncertainty of position associated with an uncertainty in momentum of the magnitude mv. De Broglie was the first to postulate that a wave process is associated with every particle and it is shown that the wave length is $h / m v$. This association between particles and wave processes is surprising but it has been actually demonstrated by interference experiments in which electrons or light atoms (for instance hydrogen) have been reflected from crystal surfaces. The laws of this reflection process are of the same kind as the laws of X-ray reflection and have been described in tems of wave interference. It is apparent from the above statements that the de Broglie wave length is closely related to the uncertainty of electron position and also to the fuziness of atomic boundaries.

LA 24 (2)

September 16, 1943

LECTURE SERITS ON NUCLEAR PHXSICS

FIRSTSERIS: TMRINOLOGY
LECTURER: T.M. MCMILLAN

ITOTURE II: INTMRACTICN OF IIGHT WITE MATTER

The list of simple particles mentioned in the last lecture comprised electrons, protons and neutrons, we may add to this Iist light. It is known that light consists of electromagnetic waves, but if, as has been mentioned, the wave process is assoclated with electrons, neutrons of protons, which we ordinarily consider as particles, then it will not be too surprising to find that light, which ordinarily can be thought of as a wave process, has contain particle properties. When light behaves like a particle, we talk about a light quantum.

There is an important difference between light and proper particles, for instance the electrons. The electrons have a strong tendency to persist. Iicht quanta do not. They get absorbed and omitted. It is not oasy to count them and for this reason it is impracticable to consider them as constituents of matter. On the other hand, whenever light does get absorbed or onitted, a chunk of onergy of a definite size disappears or is produced in each such process as though light did consist of particles carrying a certain amount of energy. This energy of a IIght quantum is $h x$ where z is the frequency of the light considored and h is the seme quantum constant which appears in the de Broclie relation connecting the momentum of a particle with the
wave length associated to it.
If the light quantum possesses a definite energy $h z$, one will also expect it to carry a momentum. According to the theory of relativity this momentum is $h \tau / c$, where c is the light velocity. It will be noticed that the ratio of energy to momentum is not the same as in Newtonian mechanics. If we write for the kine tic energy $m v^{2} / 2$ (m is mass of particle; v, its velocity) and for the momentum $m v$, then the ratio of the 2 quantities is $v / 2$, that is one half of the velocity of the particle rather than the velocity itself. But Newtonian mechanics applies only as lons as the velocity v is small compared to the velocity of light c. The value $h \nu / c$ of the momentum of a light quantum can be easily seen to agree with the de Broglie relation. In fact, c / r is equal to λ the wave longth of light and
$h / \lambda=$ momentum
is the samo equation which also holds for electrons, neutrons and protons.

In discussing light quanta, it was nocossary to introduce relativity. While this branch of physics, as woll as quantum mechanics montioned last time, have an elaborate mathematical foundation, we need to be concorned here only with a few simplo consequences of these thoories. Nuclear physics too will bo treated here on a similarly simple descriptive plane, In which the elomentary particles, electrons, protons and noutrons, are introduced without doscribing in detail tho evidence that thoy aro elementary particles and without discussing the difficulties to which this concept leads. We may add here to the inst of tho pro-
por particlos, the positron, whose existence was predicted by tho combined application of quantum mechenics and rolativity. The positron has the same proporties as an eloctron, excopt that it carries a positive rather than a negative charge. Tho only reason why its discovery occurrod much lator than that of the oloctron is that the positron is not stablo in the presence of oloctrons. The positron is attractod by an electron to which it happens to come closo. Tho chargos of tho two particles componsate oach other and their onergy is radiatod out in the form of light. Thus an oloc-tron-positron pair is anihilatod. It is possiblo to produce positrons but in the prosonce of electrons which are found in all ordinary mattor they can oxist only a very short timc. Actually the production of positrons is the roverse procoss of tho annihilation; in cach production process, an oloctron-positron pair appears, thorofore, when a production-annihilation eyclo is endod, wo aro left with tho original numbor of oloctrons.

In addition to all theso particlos, wo shall oncountor two more half-known kinds of particlos, the mesotrons and the neutrinos. The mosotrons aro known oxperimontally. They are croatod in spocial procossos obsorvod in cosmic-ray physics but they have not boon obsorvod up to now in ordinary nucloar roactions Ifke tho positrons thoy disappoar shortiy aftor thoir croation. Thoy aro of importanco in the theory of nuclear forcos which at prosent is widoly accoptod. Tho neutrinos havo not boon obscrvod. Thoy may be considerod at prosont as a puro invention introducod to satisfy tho consorvation laws of chorgy of momentum in certain well known nueloar roactions in which those consorvation laws are
apparently violated.
Cne important consequence of the theory of rolativity is the connoction between mass and onerey. A moving particle is hoavier then tho samo particlo at rest. The alfferonce in mass is proportional to the kineticenergy. Potential onergy has a similar influence on mass. The proportion constant botwoon onorgy and mass is the square of the light velocity

Enorgy $=m c^{2}$
This relation is difficult to demonstrato under ordinary conditions in which the kinotic or potontial onorgy por gram of matorial is rather small. In thoso cascs, due to the high value of tho light volocity, the enorgy changes due to the kinctic or potontial enorgy are very small comparod to the orfginal enorgy of the massos involvod, but in nucloar physics much groator onergios are assoclated with a givon mass, and horo tho changos in mass bocomo detoctable. woy considor the onergy relations in a nucloar reaction in which two Doutorons (H^{2} nuclo1) unite to form α-perticlo (Ho ${ }^{4}$). Tho roaction has actually not bcon obsorvod. Its occurronce is vory improbablo, bocauso conservation of momontum provonts the α-particle formod from carrying away tho cnorgy roloased by the roaction as kinctic onorgy. Thoreforo, tho onorgy roloasod must bo cmittod in the form of light and all reactions involving omisston or absorption of 1 teht are improbablo as comparod to tho roactions in which only hoavy particlos, noutrons, protons or other nuclot, aro involvod. It may bo of intorost that a collision of

[^0]two Deuterons actually Eives $H^{3}+H^{1}$ or $\mathrm{He}^{3}+n$ (n stands for a neutron) with about equal probability. These reactions are much more probable than the reaction mentioned above.

Theoretically, $2 \mathrm{H}^{2} \longrightarrow \mathrm{He}^{4}+$ light. This reaction can be used as a very simple example for the energymass equivalence. The mess of H^{2} is 2.015 mass units while that of $H e^{4}$ is 4.004 mass units. Therefore, the product nucleus $H e^{4}$ is .026 mess units ifghter than the two original H^{2} nuciel. This difference of mass corresponds to a difference of enerey and since in the reaction the nuclear mass and energy have decreased, the difference in enery becomes available (in the present case in the fom of light) as. the onergy of the reaction. The quantitative connection botweon onerey and mass works out in such a way that. 001 mass unit or a mfllimassunft corresponds approximately to 1 M111ion electron Volts (more accurately .935 MeV). The electron Volt (oV) in turn is an onorgy unit 1.6×10^{-12} ergs. It is the enerey an electron ocquires if it falls through a potential difforence of 1 Volt. The relation between mess and energy is frequontly used to find the exact value of a nuclear mass. This can bo done if in a nuclear reaction the mess of all but one participants are known and if the enerey of the reaction is moasured.

In practical nucloar physics intoraction of light quanta with mattor plays an important rolo. Ono way of such interaction is photo ionization. In the ilgure

a light quantum impingine upon an atom is shown. A certain onergy, say 10 oV , is needed to rip off the electron from the atom. If the hoof the light quantum is smaller than this onergy the olectron can not leave the atom. But $1 f \mathrm{~h}$ exceeds 10 , the quantum may be absorbed; the electron is ripped off in the process and carrios awey the oxcess over the 10 oV in the form of kinetic energy. The remainder of the atom is no longer neutral but carries a positive charge. It is then called a positive ion. The corrospondine negative ion, namely the electron itself, is also fomed. Hence the name photo ionization, or the production of ions by light. A11 actual observation in nuclcar physics depends on fonization. A typioal arrangoment for such observations is sketchod in the following figure.

The air in the chamber is ordinarly an insulator and so no curront can bo sent by tho battory through the galvanomotor, but if Ionization occurs in the chamber, the fons now moving up to the olectrodes will carry a cortan small amount of current which can bo road in the galvanomoter. Thus by the current one can moasure the ionization.

Ionization can be produced by charged partioles as woll as by light. Actually the ionization by fast moving electrons,
protons, Deuterons and α-particles, is a practical basis of experimontal nuclear physics. These particles moving past atoms oxort an electric field and if their velocity is high enough, produce ionization. Such particles may enter a chamber like the one shown in tho abovo figure through a thin foil They aro stopped by a thicker foil. Ono of tho simplo basic oxperimonts of nuclear physics is to find out what is the foil thickness that will stop a cortain kind of particle carryine a given encrgy.

Thero aro othor interactions botweon light and matter. Cne of thom is tho Compton offoct. This is the scattering of a light quantum on a froc eloctron, that is, one not bound in an atom. If tho olectron is not froe but its binding cnergy is nogligible comparod to the cnorey of the light quantum, we may still talk of a Compton effect. In this effect, the behavior of light cen be satisfactorily described by a particlo picture and wo thorefore draw in the following figure the light quantum as a particle.
impinging light quantum

Tho momentum and oncrgy impertod to tho oloctron by the 11 ght quantum may bo calculatod by laws of consorvation of onorgy and momentum in relativistic mochanics. The shortor arrow on the soattored light quentum indicated that tho light quantum has eivon part of its energy and momontum to tho oloctron. This is truc if the oloctron was originally at rost, which in practioc may bo assumod
almost without excoption. The erfect was discovered by A. K. Compton. He observed that most of the X-ray scattered through different angles has suffered an energy loss which depended on the anole. The energy loss agrees quantitatively with the one derived from the energ-momentum conservation laws. The Compton effect is the principal means by which V-rays (that is, high frequency licht hvef the order of 1 MeV) lose their energy. High enerey recoil electrons produced in the compton effect may be detected by their ionizing power.

There exists a third kind of interaction between light and matter, this is the pair production. In this process one light quantum disappears and an electron-positron pair is created. The effect can occur only for hish enorgy light quanta, namely, the energy of the licht quanta must supply at least the mass of the electron and the positron. It mar in addition supniy an aroitrary emount of kinetic enorey to these particles. Guantitatively the light quentum must carry approximately at least I MeV (more accurately, at loast 1.024 MeV). The process can not occur in empty space. It requires the prosence of matter. The reason for this is not that the process requires any other paw material than the onergy carried by the light quentum but pair production in empty space would violete the law of conservation of monentum. The process cen happon in the noiohborhood of a nucleus. Tho nucleus having a great mass can take up alnost arbitrary amounts of momontum. It therefore acts Iike a platform in the nelghboriood of which oloctric fiolds can act to produco a pair and transfor any oxtramomentum to the nuclous. The process occurs with groatest probability noer to strongly chargod nucloi in whoso nolghborhood
high electrostatic fields exist. The highest enerey light quanta formed in cosmic rays 10 ose their energy almost completely by the pair production process. The hicher onergy V-rays which occur in nuclear processes lose energy primarily by the Compton effect and are absorbed only to a small extent by palr production process. As the onergy of the V-rays gets lower, photo ionization plays an increasingly important role in the enerey loss in addition to the Compton Iosses.

IA 24 (3)

September 21, 1943

LECTURE SERIES ON NUCLEAR PHYSICS

First Sorlos: Terminology Lecturer: E. M. McMillan LECTURE III: FORCES HCLDING THE NUCLEI TCGETHER

As tho bost known kind of force acting betwoen particles, wo might first consider electrostatic forces. We know that parm ticles of like charge repel each other and particles of unlike chare attract each other, the force being inversely proportional to the square of the distance. It is a simplification to use the ooncept of potential energy instead of that of force. The potential energy is the amount of work needod to bring the particles from infinity where they do not interact to a definite distance from each other. If there is repulsion, work will need to be done and potential onergy is positive. In case of attraction less than no work has to be done and the potential onergy is negative. The potential onergy is the integral of the force. For the inverso squaro law of oloctrostatios, the potontial is proportional to one over the distance. The fifure shows such an attractivo potential, tho distance botwicon two particles being appiiod as abscissa and tho potential as ordinatc.

There is no olectrostatic forco betwoon a neutron and a proton since the formon docs not carry a charge. Actually there appars to bo no sizoablo forco acting botwoon theso two particles uniess they approach to a distance comparable to thoir radil which is about $10^{-13} \mathrm{~cm}$. Thero a lareo attractive foroe suddonly appears as shown
in the figure which shows the potential energy acting botwoen these two particles. The dotaled dependence of this potential on the distance is not known but the approximato shape appears to be that of a potontial well. Its dopth is oonsidorable, namoly soveral Mev.

A potential of this typo acts not only botween neutrons end protons, but also betwoon two neutrons. Two protons will repel oach othor according to tho laws of olectrostatics at groat dis-
 tances, but at close distancos the same kind of attraction appoars as betwoon noutrons and protons. The potentiel botween two protons is illustrated in the graph. One can soe in this graph the distinction betweon long range forces such as the eloctrostatic forcos which act at a groater distanco, and short range forces such as those due to the potential well whose offect is noticeable only if the particles are close. A comon exemplo that might make this Afference cloarer is the short rango ropulsivo forco ocourring when rigid bodios aro brought into contact and tho more slowly varying force which ppocars whon a spring is oxtondod and which is somowhat analagous to a long ranco forco.

If wo now want to build up a nuclous from soveral neutrons and protons, it is nocossary thet at loast the edges of these particlos should touch so that tho short range attractive forcos may bocomo oporative. This requiromont is not necossary in the calso of the olectron in tho etoms, which are hold toeether by the long pence oloctrostatic attraction and in which therefore tho
avorage distance betweon particlos is much groator than tho radil of these particles. Anothor roason why the neutrons and protons constituting the nucloi can get so close togethor is the fact that hoavy particlos mey more easily havo smellor wavo length According to quantum mochanics, it is not possiblo to confino a particlo within a small space without effectivoly oiving it a similarly small wavo longth which according to the de Eroglic relation means a high momontum, Heavy particles may possess such a high momentum without theroby obtaining an excessive kinetic energy which would surpass the nuclear binding forcos and disrupt the nucleus. "Sinco oloctrons confinod to nuclei would have such a high kinetic onergy wo must not expect to encountor them as nuclear constituents. In othor words, whon an oloctron is attractod to a nuclous, the attraction will incroaso its kinetic onorey and momontum and thoroby will docroaso its wave length, but whon the oloctron has approached to within the distance of tho nuclear radius its wave longth is still not as short as the nuclear radius and therefore one cen not think of it as boing confinod to the nuclous. .

Thore is no ossentiel difforonce betwoon tho laws of nature oporating in atoms and nucloi but in the atoms the light oloctrons do not as a rulo como closc onough so that tho short range forcos may becomo offective. It is not at all improbablo that such short renge forces act botwoen cloctrons as betwoon tho hoevier perticles. Only cosmic ray cloctrons possessing vory high

[^1]onergios may como closo enough to other particles and in thoso casos it is reasonablo to look for short rango potontials.

The conclusion is that a nuelous tonds to bo a more or 1oss closoly packed assembly of noutrons and protons. Such an as-
 sombly is shown schomatically. The crossos reprosent protons, the circlos noutrons. The close arrangemont is due to the short rango attractions On tho othor hand, thore is also a long range ropulsion between the protons which tends to pull the nuclous apart. If wo consider noutrons and protons mixod in a certain proportion and increaso the totel numbor of particles, wo will oxpoct that tho long range repulsion will oventually prevail and dostroy the nuclous. Indood, tho short renge forcos may bo considerod the samo kind of forec as conosion. Thoy will tond to glve tho nucleus a surface which is as small as possiblo, incroasing the amount of mattor and with it tho nucloar radius (R). Tho stabilizing tondoncy of this force will bo proportional to tho surfaco and therofore to R^{2}. On tho othor hand, the total chargo in such a nuclous is proportional to tho volume, thet is to R^{3} and tho disruptive forco is tho squero of this chargo dividod by tho squaro of tho avoraec distanco botwoon protons which adein is R. Thus, tho dis. ruptivo forcos would incroaso as $\frac{R^{3} x R^{3}}{R^{2}} \sim R^{4}$ and thoy will bocomo prodominant with incroasing R.

Tho structuro as doscribod abovo in a qualitativo mannor must not bo tekon too litorally. Thore is a lot of kinctic cnongy In tho nuclous and tho particios must not bo considerod as localizod. Tho protons, duo to thoir nutual ropulsion, hevo a tondoncy
to bo pushed out toward the surface, but also the numbor of noutrons and protons por unit volume tend not to differ too greatly. This w111 bo particularly noticod in light nuoloi most of which have an approximatcly equal number of noutrons and protons. The hoaviest nucloi havo almost twico as many noutrons as protons but thoro is roeson to boliove that a nucleus consisting of noutrons alone for olso protons alone) would not hold togothor at all. For a bettor undorstanding of the situation we shell have to oxplain tho operation of the so-callod exclusion principlo. In ordor to epply this principlo in practical casos, wo also have to montion the spin of particlos.

Neutrons, protons and also oloctrons carry an angular momontum or spin which in quentum units has the sizg of $\frac{1}{2}$. One may think of such a particlo as rotating around an axis which might bo oriontod in space in difforont ways. For a completc description of such a porticlc, it is not sufficiont to say whore it is or in which orbit it movos, but it is also nocossary to give tho oriontetion of its rotational axis. It is a consequence of the application of quentum mochanics thet for a perticlo with the intrinsic angular momentum $\frac{1}{2}$, the directional angular momentum may be deschibed by simply stating that the spin points upward or downard. This quantization of direction is closely related to the quentization of angular momentum. It also should be remarked that, whereas the angular momentum of elementary particles can be observed, there is no direct way to investigate their angular velocity. There is, however, a further indication or rotation of such particIes in their magnetic moment. Even neutrons, whose net charge is
zero, possess such a magnetic moment.
The spin assumes its greatest importance in connection with the exclusion principle. This principle states that two like particles must not be in the same state. To show how this principle operates and how it is connected with the spin, let us first consicer an imaginary spinless electron. One may classify the electron orbits around the helium nucleus by their energy. One electron w111 occupy the orbit of least enerey. Then the second olectron can not be assigned the same orbit because this would viblate the exclusion principle. The second electron would have to move in a less strongly bound orbit and the hellum atom would not have its particular stability. If, however, we now remember that electrons have apin which is capable of pointing in two different directions, then it is possible to put two electrons difering in their spin directions into the lowest orbit of the helium atom, and a very stable arrangement is obtained. The third electron would have to agree in its spin direction with one of the two electrons and therefore the exclusion principle prevents it from belng placed in the same orbit with the first two electrons: Actually, the exclusion principle requires that two electrons nove be in the same state, that is, they must nover be in the same orbit and at the same time heve the same spin direction.

The same general consequence of the exclusion principle In atomic and molecular physics is the appearance of closed shells In atoms and a tendency of olectrons to appear in pairs in stable molecules. There are actually only very few stable compounds with an odd number of olectrons.

A similar tendency is seen in nuolol in which again the most stable ones possess an even number of neutrons and an oven number of protons. The simplest nucleus of this Kind 1 s the particle, consisting of two neutrons and two protons. Die to the two possible spin orientetions in noutrons and protons, the exolusion principle permits all particles in the He nucleus to occupy the same (namely lowest) orbit. If now, one more neutron is added, It must go into a new orbit of higher energy. The resulting nucleus would be He^{5} but the energy of that next orbit is so high that it is not held in at all by its connection with the other perticles and H^{5} does not extst. If two neutrons are added, Ioading to He ${ }^{6}$, the attraction between the two additional noutrons stablizes the nucleus and He^{6} is actually known, but it is not vary stable.

In general, the advantage of having an approximately oqual number of neutrons and protons is easily seen. If too many particles of either kind were present, tho exclusion principle would force them into new and higher orbits and one would run out of space." An equal number of particles of the two kinds insures the greatost number of palrs of partacies which can exercise their short ranee attraction. At the sane time the number of times that the exclusion principle forces particles into new and higher orbits is reduced to a minimum. In heavier nuclef, however, it will be advantegeous to heve somewhat greator number of neutrons than protons in order to minimize the ropulsivo action between protons. One may roproscnt nuclel in a graph by dots. The abscissa of each dot gives the number of protons in the nuclous, the ordinato gives
the number of neutrons.

A11 known nueloi thon fall in a rathor narrow band which starts up at 45° corresponding to a roughly equal number of noutrons and protons. Later the band bends upward corrosponding to the inoreased proportion in neutrons.

This discussion makes it more understandable why the number of particles in nuclof is limfed. If too many protons were prosont in a nucleus, the oloctrostatic forees would disrupt the nueleus; if on tho other hand, we start adding protons and increaso the number of neutrons, then tho oxclusion princtple will require the particlos to go into such high orbits that the short range attractions are no longor sufficient to hold tho nuclous together.

$$
\text { IA } 24(4)
$$

Soptomber 23, 1943

IECTURE STRRIES ON NUCITAR PHYSICS

First Sories: Teminology Locturor EM. MCMillan
IECTURE IV: BTACTIONS BTTHEN THE NUCLEI

In order to be able to discuss the reactions betwoen the nuclef, we hevo to investigato the forces with whioh thoy oct on each other. These forcos may bo obtainod from their mutuel poton-
thal onorgy, which is shown in the figure.

In this fieurc, the potential onergy is plotted as a function of the distance of the nuclei r. At greater distances, the electro static ropulsion botwoon the nucloi is the only force acting. In this, the potential incroasos as the invorso first powor of tho distance. At smaller distancos, tho "stickinoss" of tho nucloi comos into play; that is, as soon as tho nuclol touch, they attract each othor, This rosults in a drop tn potential energy which wo have reprosentod as a potential woll. For not too heavy nuclel, this potontial woll is so doep as to ovor-componsato tho oloctrostatic ropulsion, and in this case tho potontial enorey bocomos nogative, as has beon actualy shown in the flgure.

The strongth of repulaion botwoon nucloi and thorefore the height to which the potontial barrior risos, doponds on the product of nucloi charges. This product is smallost for H^{2} atoms, but even in this caso the potential barrier of a fow hundrod kV is to bo oxpoctod. This potential value is of practical importanco in tho well-known reaction botwoon two hoavy H nuclei, which is to bo discussod bolow For all othor pairs of nuclol, the potontial bar rior is ovon highor; that is, of tho ordor of a fow million volts, or for two hoavy nuclej cvon considorably moro.

Tho strong populsion botwoon nucled explains why nuclear roactions aro uncommon under ordinary circumstances. Indecd, the kinctic cnorgy of particlos duc to thormal motion at room tompera-
ture is about $1 / 40$ of an electron volt, while energies oncountered in chemical reactions are a few eloctron volts. These energies are far too little to allow nuclei to get close enough to each other so that they may touch and raction may start. Nuclear reactions are known to proceed however in the interior of the sun, where tomperatures of the order of many million dogrees are found. In tho laboratory, it is necossary to impart to tho nuclei high kinotic energies, in order that thoy should got close onough to react.

In order to accolerate particles sufficiently, devices d^{\prime} two essentially different kinds have boen used. The one is schomatically shown in the figure:

Here an evacuated tube is shown in which tho nuclei are accelorated from the positive oloctrode toward the nogative olectrode which is grounded. An ossentially difforont method to impart high volocity to nucloi is the use of the cyclotron. In that dovico, the enerey is givon to the nuclei in a sorios of small pushos. The nuclei are hold in circular paths by a strong magnotic field. The accolerating olectric ficld is actually an oscillating field which exerts its accelerating action, always when the nuclei roach a cortain part of the circlo. While the particlos got accolorated, thoy move in fncroasing circles and aro finally ojected as fast particles.

The type of interaction between nuclei describod in the
beginning of this lecture is quito different from the intoraction botwoen nucloi and neutrons. This intoraction potential is shown in the figuro as a potontial well.

There is of courso no eloctrostatic repulsion betwon tho noutrons and the nuclous. This is the roason why noutrons, though thoy aro quito common particlos in tho nucloi, have romainod unknown so long. A ncutron can approach any nucleus froely, can react with that nuclous (for instance, it can bo captured) and so it will stop boing a froe noutron*. Thus in tho laboratory, a noutron may bo soen just "on the fly". Ono can obtain thom by bombarding a suitablo nuclous by a suitable particlo, for instanco, a proton. Tho particlos which havo bocn actually usod as bombardIng particles in nucloax roactions are of ther unchargod or lightly charged perticlos. A hoavily chargod particlo requires much too high an onorgy to ovorcome tho potontial barrior, and approach anothor nuclous sufficiontly closo. In the following tablo, the first column givos tho namo of particles used in bombarding nuclel. If that partiolo is an atomic nuclous, its notation appoars in brackots. Tho sccond column givos special symbols by which thoso frequontly uscd particlos aro designated.

WThoro is anothor purely thoorotical roason why froc noutrons are difficult to obsorto. Thoy are supposod to bo unstablo, and are oxpectod to transfom by radioactive action into protons omitting an oloctron at tho same timo, but a long timo boforo this radiom active transformation could tako placo, a noutron is usualiy capturod.

To this list, the nucle1 H^{3} and He^{3} might be addod, but they are practically unevailable and so thoy havo not boen used in our exporiments of this kind. If ono wents to use neutrons as bomberdIng particles, one has to derive thom from nuclear reactions.

If the bombarding particlo in a nucloar roaction is chargod, ono will oxpect no nucloar reaction to occur unloss tho bombarding particle has sufficient kinetic onorey to overcome tho potontien barfior botwoon tho two particles. Thus, if the yiold of such a roaction is plotted agelnst the onorg of the vombarding papticle, one expocts the yield to romain zoro mp to a given onergy V and thon riso in somemanner. This bohevor is shown in tho ffegro by tho full survo.

Actually ono finds thet this is not so, and thet yiolds do not vaniah bolow tho point V, but rather havo small but finfto valuos In that rogion. This is due to the fact that in quantum mechanics It is not permissiblo to make the atatoment that tho orbit of the
bombarding particle extends exactly up to the maximum of the potential barrier. Due to the wave nature of particles, a certain fuzziness of the orbit is unavoidable and even though the energy does not suffice to carry the particle right to the top, there remains a small probability that the particle may "leak through" the berrier. But the fuzziness in quantum mechanics is only of a limited extent. Therefore, if the particle is given less and less energy and is therefore turned back according to classical mechanics at greater and greater distances from the top of the potential barrier, the probability that it can "leak through" the barrier decreeses repidly. The actual yield to be expected according to quentum mechanics is shown as a dotted line. At high energies, where the particie can get easily over the potential barrier, the yield may approach a constant value or may even decrease again. The field curve may show a sharp maximum. This is ilIustrated by the figure.

To understand this phenomenon, we must consider the bombarding and bombarded particle after they have touched and heve fomed a socalled compound nucleus. This compound nucleus has quantum lovels and a sharp maximum occurs in the yield curve if the energy of the bombarding particle is just right for the fomation of such a quar tum level. Thus the maximum is due to an agreement between the
enorgies of the particles before reaction and the energy state of the compound nucleus. Such an agreement is called resonance. The phenomena due to such resonance are analogous to those that are encountered in classical mochanics when the frequencies of two Vibrating strings become equal to each other. The mathemetical theory of these two situations are similar and the shape of the Yield curve near a resonance maximum is essentially the same as centain resonence curves encountered in classical mechanics. It may heppen that in a reaction, the produced particles have greater intrinsic energy content than the initial partioles. In this case, the reaction is possible only if this enerey deficiency is supplied by the kinetic energy of the original particles. Then a minimum kinetic energy is required for the reaction to proceed, and the yield romeins zero up to this onergy. The energy at which the reaction first becomes possible is callod the threshold of the reaction. Unlike the case of the potential barricrs, this threshold is sharp, and below it the reaction cannot proceed even with a small probability.

As an exemple for a simple nuclear reaction, we may consider the reaction between two H^{2} nuclei. There is one possibility that the two nuclei may stick together and from an a-particie. But such an α-particle would have a very high energy content. This energy might be usod for the omission of radiation. And if it is so used, the α-particle mey stick together permenentiy. Emission of radiation takes, howover, too long a timo and it is more probable that before a ray could be emittod, the ceparticio would fly apert again. It might fly apart into two deuterons, 1.0,
one would get back the original nuclei end the net offect would be merely a collision in which the deuterium nuclei have doflocted each other. Cther reactions are also possible. Each of tho douteriums consisted of a noutron and a proton. Thus, in the moment of thoir collision, wo have two noutrons and two protons and oither one of these four perticles might fly off. Thus we might get as a result of the reaction a proton end a H^{3} or a noutron and He^{3}. Both these reactions have beon obsorved. Thoy procecd with a considorablo ovolution of onorgy but tho initial particlos must also have had appreciable kinotic onorgy, othorwiso the reaction becomes quito improbable, since tho particlos cannot approach sufficiently close.

Anothen possiblo reaction would be the formation of a nuclous consisting of two protons and of anothor nuclous consisting of two neutrons. Those nucloi are not stable. Finally, threc or four particlos may bo obteinod as a final product, such as a doutoron, a noutron and a proton, or two noutrons and two protons. These roctions require high amounts of kinotic onergy in the inftial particles and havo not beon obsorved. Tho reaction

$$
\mathrm{H}^{2}+\mathrm{H}^{2} \longrightarrow \mathrm{HC}^{3}+\mathrm{n}
$$

Is a good source of noutrons. The resulting noutrons have approximetely 2.5 MV. Another noutron source is the

$$
\mathrm{IA}^{7}+\mathrm{E}^{1} \longrightarrow \mathrm{Be}^{7}+\mathrm{n}
$$

raaction. If L_{i} is bombarded by hydrogon, a groat numbor of reactions are obsorvod duo to the fact that If has two isotopos, namely $L_{1}{ }^{7}$ and $L_{1}{ }^{6}$, and these isotopos may roact in various ways with the hydrogen nuciei. Thosc roactions could bo disentanglod
ovontually by using sopareted If semples, in which only If or If was prosent. Tho pertieular reaction quotod above,

$$
\mathrm{IL}^{7}+\mathrm{H}^{\mathrm{I}} \longrightarrow \mathrm{BC}^{7}+\mathrm{n}
$$

is ondothomic, mproximatoly QMV kinotic onorgy being noeded in the protons for the reaction to proceod, The oxcess onorgy of the Incidont protons over tho throshold will turn in groatost part Into kinetic encrgy of the houtron. By controlling the proton onergy ono might get noutrone of given energios. this reaction is actually tho best way to produco falrly monocnorgotic noutrons in the renge of fow tenths of a MV.

Thereection

$$
\mathrm{Bo}^{9}+\mathrm{H}^{2} \rightarrow \mathrm{~B}^{10}+\mathrm{n}
$$

Is a very coplous source of noutrons if doutorons of 3 MV or more are usod. Such deutorons may easily be produced in cyclotrons. Tho roaction is strongly oxothemio and givos thoroforo noutrons of very high onergios (around 10 MV). Tho noutrons so produced do not evor havo woll definod energy. The Bl0 produced in the roaction mad bo loft bohind in various statos of oxcitation, and the noutrons carry away tho varying amounts of onorgy that havo not beon usod up in oxciting Blo trentually, tho oxcitation courgy of B^{10} is omitted in the form of V radiation. It is to bo noted thet in tho $d+d$ roaction no oxcitation occurs because the very Ilght nuclol obtained in this roaction (for instance H ${ }^{3}$) do not have excited levels in the neighborhood of 3 or 4 MV , which is the energy available in this reaction. This onorgy must therofore bo carriod off as kinetic onorgy of tho reaction products and one obtains noutrons of woll-dofinod onorgios:

LA 24 (5)

Soptombor 28,1943

LECTURE SERIES ON NUCLEAR PHYSICS

First Sorios: Tominology \quad Locturor: B.M.McMillan

IECTURE V: RADICAGTIVITY

Historically tho first nucloar transformation obsorvod wes radioactivity. It was noticed that some mincrals continually givo of contain typos of radiations which woro namod α, β and $\gamma-$ radations. Thoir nature was letor discovorod. The a mediation was identifiod with Ho^{4} nucloi, tho $\mathcal{\beta}$-redietion with olectrons, and the γ-radiation with quanta of oloctromagnotic radiation. In a radiooctivo process a nucleus undorgoos a spontencous change, in which it may mit a part of its own substonco. The Yradiation howover corrosponds morely to a sottling down of a nuclous from a hishor onorgy state into a lowor, moro stable stato. It usually follows some othor reaction and is accompanicd by no chomical chence of the substence.

Whon an a-ray is omittod, tho ojoctod particlo carrios two charges and the nuclous is loft with two chargos loss, that is, it movos down by two placos in tho poriodic systom. An oxamplo is the roaction

$$
\mathrm{Ra}^{226} \longrightarrow \mathrm{Rn}^{222}+\mathrm{HO}^{4}
$$

in which the oloment Radium, which is analagous in its proportios to Barium, is transformod into tho noblo gas Radon. This roaction is balanced in the semo menner as the artificial roactions mentionod oarlier but on ossontial difforonco is that it occurs spontancously. Following tho abovo ronction, Radon omits in turn an
apparticio and transforms into an olomont which chomically boheves 11ko Polonium. It is acturily an isotopo of Polonium. Anothor 1sotopo of Polonium (which 1 s usually moant when ono talks of Polonium is obtainod aftor a sortos of furthor transfomations In whion partiy α, partiy \mathcal{B}, particles are omfted. The fact that two substancos bohevo chomiceliy in an idontical way and yot differ in thoir radionctivity and in othor nucloar propertios $10 d$ to tho discovory of isotopos. No havo soon that tho radioactive transformation of Radium is followod by a chein of furthor transformations. In somo of them arparticlos aro omittod and the ro maining nuclous is movod down two placos in tho poriodic systom. In othors, the β-activo substancos 1 n tho natural radioactivo sopios, a negative oloctron 1 s omttod and in order to conservo the charge, the eloment has to movo up by ono place in tho poriodic systom. Radium itself is dorivod from othor radoactive substancos In tho particular sonios to which Radium bolongs, all eloments aro dosconded from Uranium which has a very long life of sovoral bilI10n years. The othor olomonts in this scrios have much shortor lipes but they aro raplonishod from tho original stook of Uranium. It ts romarkable that tho ec-activo substances tako suoh a long timo to onit tho o-particlo. Radium for instanco, has a 11 o of about 2000 yoars. Tho figuro shows tho potontial onergy of an a-particlo in tho fiold of a nuclous.

At groat veluos of ry the intoraction botweon tho a-particio and tho rost of the nucleus is oloctrostatic ropulsion. At smell dis
tancos, tho stickinoss of tho nuclous will cause tho potontial onorgy to bo lowored, and noar $r=0$ wo find a potcntial woll. The horizontal line not far from the top of the woll peprosonts the onorgy lovel which the a-particlo occupios within tho nuelous, This oncrgy lovol in a radioactivo nuclous is highor than tho pow tontial enorgy at vory high raluos. This must bo so bocauso wo know that at high r valuos the α-particlo may appor carrying considerablo kinotic onorgy, which kinotic onorgy must bo dorivod from tho onergy that tho coparticlo originally possossod in tho nuclous, but in ordor that the a-particle should oscape the nuclous (moving along tho dotted ine in tho figuro) it must cross a region of high potential onorgy. According to classical mochanics this is impossibio. In quentum mochanios tho fuzzinoss of partholos makos ponotretion through tho potontial barrior possible but the probability of tho particlo loaking through is vory small. This is truo in particular if tho potontial barrior is high. Ono finds that the averago time which tho α-particio is supposod to spond in tho nucious boforo lcaking out by tho quentum mochanical mothod is in fair agromont with tho times actually obsorvod. Tho sonsitivo dopondonco of this timo on tho hoight of tho potontial barrier explains why radioactivo docey times Vary from a small fraction of a scoond to sevoral billion yoars.

Tho mathomation law of radioactivo docay is based on the fact that oach radioactivo xuozcus has a constant probebility of docay It is to be notod tint this probability of decay is indepondent of tho timo tho panticular nucieus has already ilvod. It follows that in a bunch of radionctive nucloi, the number of
nucloi docaying por scoond is proportionel to the numbor of nulloi prosont. If ono plots the numbor of nucloi as a function of timo, ono obtains a curvo shoyn in tho figuro.

Tho curvo is an oxponential function and tho numbor of nucloi is given by the formula

$$
N=N_{0} c^{-\lambda t}
$$

N_{0} is the originel number of neutrons (which were present at $t=0$) and λ is the reciprocel of the so-called mean 11 fe . It is understood that some nuclei live shorter, and a few, considerably longer, then this mean life. It is more usual to describe the radom active decay by the half-1ife which is given by

$$
\text { half-11fe }=0.693 / \lambda
$$

The half-life is the time in which half of the original number of the nuclel has docayed.

In discussing the β-decay we sholl consider an artificlally radioactive substence. Artificially redioactive nuclel obey the some laws as neturally radioactive ones; but instead of being encountered in nature, they have to be produced by bombarding a naturally occurring nucleus by a light nucleus. In this way, many β-active substances have been produced while artificial $\boldsymbol{\alpha}_{-}$ activities are very rare. A well-known artificial β-active substence is obtained by bombarding the one stable isotope of Sodium by Deuterium

$$
\mathrm{Na}^{23}+\mathrm{H}^{2} \longrightarrow \mathrm{Na}^{24}+\mathrm{H}^{1}
$$

One obtains the $N a^{24}$ nucleus which decays according to the equation

$$
\mathrm{Na}^{24} \longrightarrow \mathrm{Mg}^{24}+e^{-}
$$

 that a negative olectron is omitted. The nucleus produced in the reaction, Magnesium, has one more charge than sodium and thus the total charge is conserved.

It has been stated that in a nucleus there is no room fod olectrons. How is it then possiblo that the nucleus should emit an olectron? It must be postulated that the electron is created In the β-disintegration process. Cther processes are indeed known in which perticies are created. One example is the creation of electron-positron pairs from radietion. The elementary oreation process in β-octivity is the

$$
n \rightarrow p^{+}+e^{-}
$$

roaction. The energy delivored to the olectron is pertiy due to the mass difference between the proton and tho neutron end partiy 1t is drawn from the onergy store of the β-active nucleus in which the noutron was originally formed. The above simple process is exothemic. It is assumed that the neutron itself is β-active. This activity howevor takes a longer time then other processes by which noutrons can diseppoar and therefore the β-activity of froo noutrons has as yet not boen obsorved.

Another kind of β-active nucleus is formed in the reaction

$$
\mathrm{N}^{14}+\mathrm{H}^{2} \longrightarrow 0^{15}+\mathrm{n}
$$

The 0^{15} nuclous decays according to the equation

$$
0^{15} \rightarrow N^{15}+e^{+}
$$

This timo a positivo electron is emitted. This kind of activity is a little rarer than the one discussed above. It does not occur in the naturally radionctive sories. Tho olementary reaction in this caso is

$$
\mathrm{p}^{+} \longrightarrow \mathrm{n}+0^{+}
$$

This time the olementary reaction is ondothormic. This moans, that tho proton is stablo and a positron can be emitted only if the onergy store of the B-active nuclous can supply an onergy sufficient to overcome the mass difforence between proton and neutron. Sometimes it heppens that a nuclous instead of omitting a positron absorbs one of its own electrons. As a rule this electron will be one of an inner layer in an atom, that, a so-called K-olectron. Mife process requires a somowhat smellor onergy than the emission of a positron because of the mass (and corrosponding onergy) of the positron and electron. In principlo it would bo possiblo for a nucleus to capture a positron. But cven tho capture of an electron is an improbable process in spite of the fact that the olectron is noar to the nuclous all the time. It practically nevor happens that a positron on its briof passage noar a nucleus is absorbod.

The mathomatical doscription of tho β-decay is tho seme as of the α-decey. The half-livos range from a fraction of a socond to hundrods of yoars. Slownoss of the β-process howover cannot be explained by the presence of a potential barrier since the olectron has a long onough wave length to loak through nuclear potontials in exceedingly short times. The long lives of β-procossos feven a fraction of a second is a lone time on a nuclear
time scale) must be explained by an inherent unwillingness for the neutrons and protons to transform into each other. We must acm cept the fact that the elementary creation processes mentioned above have a low probability and the corresponding reactions prom ceed at a slow rate. This also explains the fact why bombardment of naclei by electrons does not produce typical nuclear reactions: The only action of electrons on nuclei which has been observed is due to the electric field of the electron which gives rise to simiIar excitation processes as absorption of γ-rays.

Btransformations are frequently represented in nuclear charts as shown in the figure.

The ordinate gives the number of neutrons, the abscissa the number of protons. Dots in the diagram ropresent nuclei, diagonal arrows represent β-transformations. The β-transformations actually limit the region in this diaeram in which stable nuclei can be found. If a nucleus contains too many protons, it will emit one or more positrons and the nucleus will thereby return to the belt of stable nuclei. If too many neutrons are present, electron emis sions will accomplish the same thing. These emissions must happen in single steps. Simultaneous emission of two electrons or two positrons is exceedingly improbable, as will be seen from the fact that the probability of such a process must be the square of the
probability of a single emission process which we have otated is of itself improbable. No such double process has ever been observed.: It can happen however that a nucleus may emit oither an electron or a positron. This occurs when the nucleus can decrease Its energy either by transforming a neutron or by transforming a proton into a noutron.

Charts of the kind shown above are useful in following any kind of nuclear reaction. In the part of a chart shown in the figuro below; two reactions are shown. In the first a proton $1 s$ added; a β-active nucleus is obtained and a positron is emitted subsequently.

LA 84 (6)
September 30, 1943

ITCTURS SMRIES ON NUCIEAR PFYSICS

First Series: Teminology \quad Locturer: W. McMilan ITCTUREVI: I) Q-DECAY II) METRCN REACTIONS
I) In a nuclear process in which a β particle (electron)
is emitted, the particular nucleus goes from one definito energy state to another definfte energy state. Hence one would oxpoct the emitted $\mathcal{\beta}$-particle to possess a definite kinetic energy. Jxperimentally, however, it is found that the β-particles are not homogeneous in energy but have a distribution as shown in the following figuro.

The upper limit of the energy oorresponds to the value expected by the law of conservation of energy. Several explanations for the leck distribution in energy have been suggested, but as yet no completely satisfactory theory has been given, One may suppose that a γ-ray is emitted during the process to acoount for the die crepancy in energy, but cases are known definitely where no $\boldsymbol{\gamma}$-ray 1s emfted. It has been suggestod that energy conservation does not hold. However the preferred present hypothesis is that energy conservation is valid and that part of the energy is emitted as undetected radiation. This radiation is supposed to consist of particles possossing some remarkable properties: They are uncharged and possess very small mass, hence they oannot be observed. In order to conservo angular momentian, one must ascribe to them an angular momentum of $1 / 2$ quantum unit. This extroordinary particie has been called the noutrino.
II) The noutral character of the noutron permits it to approach a nucleus without having to overcome any repulsive forces. As a rosult, neutrons with slow velocities aro quite as effective In inftiating a nuclear reaction as fast moving ones. Thus if one wore to plot a yield curve as a function of the neutron energy, one would expect as a rough approximation that the curve would be a constant. Actually the cross-section (1.e., the probability) of the reaction incroases with decreasting velocity of the neutron. One may see that this fact is plausible by recalling that the wave length associated with the neutron 1s Inversoly proportional to its volocity, Thus the slow neutron 1s not localized as much as a fast one and consequentiy has a greater probability to strike a nucleus.

A plot of the cross-section σ as function of noutron velooity Vis shown in the 1 Lgure below. For large values of ∇ the cross-section approchos the goometrical oross-section of the nuclous.

The above curve however is not the complete story. For It is found in some coses that if a boam of neutrons have a cortan defintto velocity (within a rather small range) the cross-soction is much larger than would be expocted on the above pleture. This Is the so-colled phenomenon resongnee. The places on the velocity (or energy) scale where these rosonances occur depend on the particular nuclous. The fact that gadolintum and cadmium have such oxceedingly high oross-scetions for slow noutrons may be explained by the presonce of resononces at voloclties corresponding to thermal onergles. Experimontal mothode are known for detemining the position of these rosonances.

Tho large cross-sections for neutrons of themal velocities mako it dosirable to have an edequete sourco of siow noutrons. Most of the neutrons from nuciear reactions have enorgles oxceedIngly large compared to themal. It is dosirable to tslow down" or moderato them. A setisfactory mothod that is used is to have them mako coll1sions with 11ght nucle1, Inasmuoh os the onorgy trensfor proceods best whon the two colliding particlos have the same masses. Hydrogeneous materials such as paraffln aro ofton used. Graphite is also used, although it is not as cood a modorator es papaffin, the loss of neutrons by cepture is los.

There are soveret distinct types of nuclear reactions in-
duced by noutrons: (1) simplo capture, usually followed by the emission of a pray, the resulting nuoleus being an fotope of one mass unft larger than the orfginal nueleus; (2) Inelastic colIsion the Internal onorgy of tho nucleus is changed. This reaction may be regarded as an absorption of a noutron by a nucleus and a subsequent remomssion of a neutron. (3) The (n, p) reaction a neutron is absorbod and a proton is omitted. This reaction procoeds with fast neutrons, although a slow neutron reaction is known for nitrogen. Here the product nuclous has an atomic number one smaller thon the bombarded nuclous. (4) The ir, $\boldsymbol{a}_{\text {, peaction: }}$ oxamplos of this aro

$$
\begin{aligned}
& L^{6}+n^{1} \longrightarrow \mathrm{He}^{4}+H^{3} \\
& B^{1}+n^{1} \longrightarrow \mathrm{~L}^{7}+H e^{4}
\end{aligned}
$$

These roactions proceod with slow neutrons. For hoavier nuclei, the α-particle must overcome a potontial barrier; hence fast neutrons are requirod, (5) The ($n, 2 n$) roaction in which two neutrons are emfted requires fast neutrons. (6) For the sake of completeness, elastic collisions are included. Here the internal energy of the irradiated nucleus is unchanged.

$$
\text { LA } 24(7)
$$

October 5, 1943
LECTURE SERIES ON NUCIEAR PHYSICS
First Series: Teminology
Lecturer: E,M. McM111an

LECTURE VII: NUCLEAR FISSION

The word fission means splitting or broaking apart. We are concerned here with a procoss in which a nucleus splits into two more or loss equal parts. Tho product nuclei are fairly heavy. Only such fission processes are known in which tho initial nucleus is one of the heaviest nuclel.

The peason for the fission process is the olectrostatic repulsion botween protons. In nfghly charged nuclel the potential onergy of this repulsion is se great that by breaking apart the nuclous can 1 berate onergy. To 111ustrate this, we plot the mass defect as a function of the otomic number for stable nuclel.

Fig. 1

The mass defect is a measure for the potential energy per particle In the nucleus. One obtains it by subtracting from the nuclagr mass the nearest integer (which is the number of neutrons and protons in the nucleus and has been called the mass number) and then dividing by mass number. By going from Uranium to the fission products, this potential energy per unft particlo has considerably docreased and in the fission process an energy of the order of 100 MV may be 11 berated.

Tho possiblilty of such onergy liberation has boen known for a long the but it has beon considorod unlikely Actualy fission occurs when tranium is bombardod by neutrons. The fission products are radoactive. These activitios have beon obsorved, but for a considerable time they were not interpreted as due to fission products because of tho proconcelved ldea that the occurrence of the
fission process is practically impossible. Finally Hahn observed that one of the activities is definitely due to Barium. Since this nucleus has only little more than half the mass of Uranium, it became evident that the Uranium nucleus did break into large fragmenta Physicists then started to look for highly ionizing particles. It could be predicted that fission will give rise to sudh particles, because the great amounts of energy liberated in the process must eventually be dissipated in the form of ionization processes. The highly fonizing particles were easily found by letting fission prom ceed in an fonization chamber in which the ions formed are drawn out by an electric field and collected on the electrodes. The pulses and corresponding ionizations obtained were many times stronger than those produced by α-particles which up to that time were the most strongly ionizing particles.

A picture explaining the fission process is based on the droplet model of heavy nuclei. Like droplets, heavy nuclei are supposed to be held together by surface tension. Surface tension acts Ilke an elastic skin. It can be explained by the tendency of the constituent particles of the droplet to get in as close touch with each other as possible. On the surface the particles do not make as many contacts as they would in the interior. Thus a surface means a positive potential energy, and there is consequently a tendeney to form as small surfaces as possible.

The charge of the nuclei acts in the opposite manner from surface tension in trying to pull the nucleus apart. As long as the droplet is spherical (as shown in Fig. 2) the charge, being symmetrical, will not be able to produce motion. If, however, the nucleus assumes an ellipsoidical shape, the charges will accumulate
near the ends of the ellipsold (as shown in Fig. 3).

Fig. 2

F1g. 3

The charge will then tend to cause further elongation and might split the droplet. This effect was observed in the case of water drops. The larger the charge, the smaller elongation will cause the droplet to break up. This picture explains therefore why fission can be expected with greatest probability in the most highly charged nucle1.

In Uranium and Thorium, fission has been induced by neutron capture, If the neutron is captured, its binding energy becomes avalable. This energy is as a rule eventually emitted in the form of γ-radiation. For that radiation, however, considerable time is needed. The first effect of the binding energy is to set the particles within the nuclous into motion. An osciliation mey set in and may five to the nucleus, temporarily, an elliptical shape which is well known to occur in the oscillation of droplets. Then fission may resuit.

Uranium has two principal 1 sotopes, U^{238} and U^{235} (a third Isotope U^{234} is very rare). The U^{238} nucleus is the parent of the Radium series. U235 is that of the Actinium series. Both these nuclel undergo fission. In U^{238} the fission has a threshold of a 11ttie more than 1 MeV. The fission oross-section, σ_{f}, varies with the energy of bombarding neutrons as shown in the following

Fig. 4
The threshold energy is the amount of energy needed, beyond the binding energy of neutron, to carry the nuclous beyond the stabiIIty point, that is, to give to tho nuclous a sufficiently ellipsoidical shape. Since this encrgy is only needed to overcome a potential barrier, the question arises why by the leaking through process fission does not occur spontaneously. The answer is twofold: first, the barrier is high and broad; and socond, spontancous fission does occur, but at an excecdingly slow rato.

There is no threshold in the fission $U^{23 E}$. Mis nucleus obtains by neutron capture an ovon number of neutrons and since nuclei with an oven number of neutrons have a stronger binding energy, more energy is liberated in this neutron capture process than in the capture of T^{238}. Therefore, enough energy is available to start the fission process even if the neutron brings no kinotic energy along.

Fission in Thorium benaves in a way which is similar to fission in U^{238}.

The β-activity of the fission products may be explained by considering the plot of tho stable nuclei.

In this figure, the dots as usual represent nuclei, their ordinates and abscissae giving the number of neutrons and number of protons contained in the nucleus. If Uranium splits into two more or loss equal framents, the corresponding points indicated by the solid Ine are considerably above the region of stablo nucloi. The fission products will then get back to that region by a sories of \mathcal{B}-decays, indicated in the figure by small arrows. Many chains of this kind have been found Most of these activities were not known previously. However, some of them near the end of the chains and lying close to the region of stability are known artificial activities. These activities have helped to identify the mass numbers of these radioactive chains. The atomic numbers could of course, be found by investigating the chemical propertios. While the product nuclei in fission havo approximately equal welght, there is a marked tendency for a slight dissrmmetry. In the most probably fission process, the ratio of massos of the fission products is distinctly different from unity. In spito of many attempts, no explenation has been found which is quite simple and convincing.

LA 24 (8)
Ootober 7, 1943
LECTURA SERISS ON NUCLIAR PHYSICS
Seoond Series: Eadioaotivity Lecturer: E. Segre
LECTURT VIII: THE RADIOACTIVE DECAY LAW
Each atom has a probability λ dt to dacay in time dt. The coefficient is called the deoay constant, and of cour se varies with various substances. Alpha, beta and gamme emissions all follow the same deouy law. From this it follows that change of number of atoms dN in time dt is $-\mathbb{N} \lambda d t$, where \mathbb{N} is the number of atoms present at time dt. The fact that is an integer causes diffioulties with the definition of the differential dN. Hathematically these difficulties oan be obviated by using appropriate averages. However, the difficulties actually do arise in the experiments when the number of decays have to be established by counting. This point will be discussed later.

The differential decay law given above may be intecr stec and gives $N(t)=N(0)-\lambda t$
where $\mathbb{N}(t)$ is the number of atoms prosent at time t and $N(0)$ is the original number of atoms which were present at $t=0$. In the following figure $N(t)$ is plotted against the time. In addition, this figure shows the time τ which is called the mean life and which nay be defined as the time at which the number of atoms have decroasec to I / e of their original value Also shown in the figure is the half Lfe, or period, designated by $T_{1} / 2$ or simply. This is the time in

which the number of atoms has decreased to $1 / 2$ of their original value. It is seen from the radioactive decay formula that $\tau=1 / \lambda:$ Also one has

$$
\theta^{-\lambda T}=1 / 2
$$

from which it follows that

$$
\lambda t=\ln 2=.6931
$$

The designation mean life or t is justified by the fact that it is actually the average of the time an atom lives before decaying. In fact the number of atoms which have lived for a time between t and $t+d t$ is $N(t) \lambda d t$. Multiplying by t, integrating from 0 to a, and dividing by the original number of atoms, one gets for the mean life

$$
1 / \pi(0) \int_{0}^{a} t \pi(t) \lambda d t=1 / \lambda
$$

It is easy to verify that this expression is $1 / \lambda$ which by definition is equal to τ_{1}

The number of atoms decaying per unit time is dinned as activity. It
is equal to. $\mathbb{N}(t) \lambda$. Activities are measured in units of curies. A curie oresponds to 3.7×10^{10} disintegration per second. The reason for the choice of this number was that it was supposed to be the number of disintegration per second occurring in one gram of radium. Recent measurements seem to show that the number of disintegration in radium is actually somewhat lower (the latest value is $\left.3.46 \times 10^{10} \mathrm{dis} / \mathrm{sec}\right)$. But it is better to retain the number $3.7 \times 1010 \mathrm{dis} / \mathrm{sec}$ as a fixed unit. In medicine a different meaning is often adopted for the expression "radium equivalent." Thus a milligram radium equivalent may mean an amount of substance which gives rise behind a 10 mm lead shield to the same density of ionization as would be caused by ling of radium. The reason for such a definition is that the biological effects of radioactive substances are due to the ir ionizing power.

- The change of the amount of radioactive substance with time may be quite complicated if the radioactive substance is itself a product of radioactive decay
or even more partioularly if the radionctive substano is a member of a long radioaotive chaln. How complicated such chains may beoome can be illustrated by the example of the Uranium family. The following table is essentially taken from the Handbook of Chemistry and Physios, 27th Edition, page 315.

The deta given in the handbook are the results of an international agreem ment on the best available information in 1930. In the meantime, changes are necessary. These changes have been incorporated in the following table. These are not the only changes nooded.

INTERNATIOFAL TABLE OF THE RADIOACIVF ELBMENTS AND THEIR CONSTATTS

Name Symbol Half period I Radiation Isotope

Uranium and Redium Sories

Uranium I	Ul_{1}	$4.56 \times 10^{9} \mathrm{yrs}$.	α	U
Uranium X_{1}	$U-\mathrm{X}_{1}$	24.6 days	β	Th
Uranium X_{2}	U-X	1.15 min .	β	Pa
Urainium II (Brevtum)	$\mathrm{JII}^{\text {I }}$	$2.68 \times 10^{5} \mathrm{yrs}$	α	प
Ionium	Io:	$6.9 \times 10^{4} \mathrm{yrs}$.	$\boldsymbol{\alpha}$	h
Radium	Ra	$1690 \mathrm{yrs}$.	α	Ra
Radon (Radium omanation, Niton)	Rn	3.85 days	α	Rn
Radium A	Ra-A	3.0 min.	∞	Po
Radium B	Ra-B	26.8 min.	B	Pb
Radium ${ }^{\text {c }}$	Ra-C	19.5 min	99\%97\%	Bi
Radium C^{\prime}	$\mathrm{Ra}-\mathrm{C}^{\text {a }}$	$1.44 \times 10^{-4} 500$	α	Po
Radium D (Radiolead)	Ra-D	16.5 years	β	Pb
Radiume	Ra, -E	5.0 days	3	81
Radium F (Pol 隹ium	$\mathrm{Ra}-\mathrm{F}$	136 days	α	Po
$\underset{(\text { Looad })}{\operatorname{Radium}^{2}}$	$\begin{aligned} & \mathrm{Ra} \Omega \\ & \mathrm{~Pb} 206 \end{aligned}$,.....	Pb
Radium C	Ra-C.	, $0 . .10$.	.03\% a	Bi
Radium $C^{\prime \prime}$	Ra-C"	1.4 min.	B	TI
(Radium C_{2})				
Radium $\Omega^{\text {H }}$	Ras	-........	Pb

The chane in the number of atoms N_{1} of tho first momber of a radiom active series oboys the simple differential docay law montioned in tho boginning of tho lecture

$$
d N_{1}=-\lambda_{1} N d t
$$

where λ_{1} is the docay constant of the first member of the series. The change In N_{2}, the number of atoms of the second member of the series is

$$
\mathrm{dN}_{2}=\lambda_{2} \mathrm{H}_{2} d t \quad-\lambda_{2} \mathrm{~N}_{2} d t .
$$

The first term of the right hand side is the inerease in the number of atoms No due to the deoay of the first member of the radioactive series. Similarly, we oen write for the third member

$$
d N_{3}=\lambda_{2} N_{2} d t-\lambda_{3} \mathrm{~N}_{3} d t
$$

Similar equations hold for further members of the serios. The systom of equations thus obtained may be solved by wrtting

$$
\begin{aligned}
& N_{1}=a_{11} e^{-\lambda_{1} t} \\
& N_{2}=a_{21} e^{-\lambda_{1} t} a_{22}-\lambda_{2} t \\
& N_{3}=a_{31} \theta^{-\lambda_{1} t \quad a_{32} \theta^{-\lambda_{2} t} a_{33} \theta_{3} t}
\end{aligned}
$$

The ooefflotents all, a a_{21}, a etc., may be determined by two operations: first, substituting the expressions for N_{1}, N_{2}, N_{3}, into the differential equations, governing the time rate of change of these quantities, and second, writing the oxpressions for $\mathbb{N}_{1}, \mathbb{N}_{2}, \mathbb{N}_{3}$, eto, for $t=0$, and equating these quantities to the known Initial amounts of the radioative substances. In this way a neoessary and suffleient number of equations is obtained to find all the coefficients. Solutions for the time dependence of N_{1}, N2, etc., In some of the oases of practical importance in the Ra family are tabulated in the book of me. Curie.

A simple consequence of the equations discussed is the radioaotive equilim briun. If, o.g., a uranium solution is left standing for a time long oompared to the half-life of the first daughter product $\mathbb{U}-X_{1}$ (i.e., long compared to 25 days), then a stationary state wilestablish toself in which the same number of U-X nuclei decay and are formed per unit timo. This is the case if the aotivitios of U_{1} and U_{1} become equal, or if the rotio of the number of uranium atoms to the number of $U-X_{1}$ atoms is the same as the ratio of the period of tho uranium atom to that of the U-XI atom. This simplo conoopt of radionotive equilibrium is based on the fact that the original mother substanco U_{1} has on exceodingly long life and its depletion can be negleoted during the growth of the daughter substance. If U-X is precipftatod out of a uranium solution, all tho $U-X_{1}$ will boformed in the
precipitate and none in the solution. The solution, however, retains all of the mother substance U_{1}. Subsequently, $U-X_{1}$ will grow in the solution, while it will decay in the precipitate. This growth and decay are illustrated in the following figure.

The decay of $U-X_{1}$ in the precipitate follows the simple exponential radionctive decay law. The growth of $U-X_{1}$ in the solution can be obtained from the fact that cherical separations must have left the total aotivity in precipitate and solvtion unonenged. Therefore, the two curves in the figure must add up to a constant. These observations were originally due to Rutherford around 1900. Betore he cleaed up the situation, it was very ocheusing to chemists that a solutior purified from a rodioaotive material one day would show the same activjay again the next day the figure shown above has peen ohosen by Lord Rutherford for his escutcheon.

Radioactive equilibrium involving substances of longer periods can be studjed in rooks. Thus the ratio of holf-1ives of U_{I} and UII has been determined from the ratio of abundanoes of these atoms in uranium-carrying minerals. since U_{I} and UII have the same properties, their ratio has to be determined by the moss spectuogaph.

An obsolute determination of the life time of uranium itself oannot be oarried out by waiting for its decay. In this case, as in other cases of long periods, the usual procedure is to make a thin film of known weight of uranium and count the a-particles emitted. In this way, one can find the number of disintegrations per second, provided that the film is thin onough so that all the α-particles emitted by uranium can actually get through the film. The same
method is used for determining the half-life of radium. In this case, however, the oldest racium samples (about 40 years old) begin to show an activity slighty smailer than thoy had originally.

Periods in the range between a few seconds and a year may be conveniently detormined by following the change of activity with time. Most of the known artificial activities fall into this range. This is due to the fact that activities with very short or very long lives are hard to detect. Tven where the simplest determination of life time is feasible, a procise determination of the lifo time is difficult. Thus the bost known poriod of a naturally active element, that of radon, is known to a precision of . 05%, while the poriod of the woll knoth artificially activo nuclous P^{32} is known to $.2 \%$. The usual accuracy of half-livos is less than 1 or 2%. This oxporimontal uncortainty may give riso to considerable orrors if amounts of a radioactive substanco aro to bo calculatod from tho docay formula from moasuromonts takon long aftor tho time in which ono is interestod.

Spooial mothods aro nocdod to moasuro poriods which aro shortor than a socond, Onc mothod applicablo for radioactivo gasos is to lot tho gas with a known volocity stroam in a pipc, past a sorios of collocting oloctrodos, as shown in tho figuro.

Tho ourront colloctod by thoso oloctrodos is proportional to the ionization caused in their neighborhood by the radioactive gas and this in turn is proportional to the number of radioactive atoms remaining in the stream. From this measurement and the known velocity of the gas, the decay period may be calculated.

A similar method has been used for known gaseous substances. But instead of the velocity of the gas stream, the recoil velocity of the radioactive atoms was utilized, the recoil being due to the demission by which the short lived substance was formed. This method is not reliable because instead of single atoms, groups of atoms or crystallities may recoil, thus making the recoil velocity uncertain.

A more successful method utilizes coincidence counters.

Let us suppose that a parent substance emits $\mathcal{\beta}$-rays and thereby transforms into ana-active substance of very short period. The substance is placed next to an and to a β-counter and the counters are connected to a coincidence oircuit which will give counts only if the two counters are activated within a time to apart. Then the number of coincidence counts to be expected is

$$
c=-C_{\max } \int_{t_{0}}^{0} e^{-\lambda t \lambda d t}=C_{\max }\left(1-e^{-\lambda t_{0}}\right)
$$

Here $C_{\max }$ is the number of counts to be expected if t_{c} is chosen as a very long time. This quantity is multiplied by the integral of the activity $\lambda e^{-\lambda t}$ of unit substance over the period t_{0}. Thus C gives the number of counts obtained if only those a-disintegrations are effective which occur within a time t_{0} after the \mathcal{P}-disintegrations. Repeating this oxperiment for various times to one can find $\boldsymbol{\lambda}$ from tho variation of C. This oxporimont has been carried out for the Ra-C - Ram' pair of radioactive substances. It is claimed that this method is capable of measuring halfmlives between 10^{-1} and 10^{-7} soconds.

LA 24 (9)
October 12, 1943

IECTURE SERIES ON HOCLTAR PHYSTCS

Seond Soriesi Radiogativity
Lecturer: E. Segre

LECTURE IX1 1) MHE RADIONIIVE DECAY LAW (continued)

2) FLUGTUADIONS 3) PASSAGY OF PARTICLTS THROUGE MATTER

I. TTE RADIOACTIVE DECAY IAN

One application of the radioactive deoay law is the determination of the age of the oarth. This can be done by determining lead in uranium ores. If originally no load was present in the ore and is thoore hes remained undisturbed since its formation, the lead formed by radioactive decay will give a measure of the time that has passed sinoe the fometion of the ore. Another similar mothod measures the helium formed by radioctive decay and remining in the ore From the age of the oldest ores, the presumable age of the oarth can be determined. Values of the order of 109 years have been obtained.
II. TLUCTUATIONS

Redionotive measuroments are usualay made by counting disintegrations. The fluctuations ocurring in those counts introduce orrors into the measurements. Wo shall invostigato tho influenoo of those eluctuations.

The simplost oase is if the substance under invostigation doos not docay appreciably durine tho time of the no surement. Wo shall considor such a geso. Assume that tho aotivity of the substano corrosponds to m counts por socond The probabilty of finding n oounts in a second instoad of tho oxpeotod valuo m is denotod by p_{n}) To find p_{n} wo subdivido the socond into k parts and mako tho subdivision fino onough so that tho probability of finding

[^2] wes duo to Bornouilli and Piosson.
two counts in ono subdivision is nogligiblo. To find ono count in such a subdivision has a probability $m / 1$. To find n particlos in tho first n divisions and to flad nono in tho following k-n subdivision has tho probability
$$
(m / k)^{n}(1-m / k)^{k-n}
$$

To find n counts distributod in any manor among tho k intorvals, wo must multiply this last oxprossion by tho binomial cooffioiont $\left(\frac{k}{n}\right)$ 1.0., tho numbor of Ways in which n intorvals oan $b o$ choson among l. Thus wo obtain for p_{n}

$$
\mathrm{p}_{\mathrm{n}}=(\mathrm{k})(\mathrm{m} / \mathrm{k})^{n}(1-\mathrm{m} / \mathrm{k})^{1 / n}
$$

If wo now lot' k go to infinity, the first factor in tho abovo oxprossion bocomos

$$
\left(\frac{k}{n}\right)=\frac{k(k-1) \ldots(k-n-1)}{n!} \underset{k \rightarrow \frac{k^{n}}{n!}}{ }
$$

whoroas tho last will bo

$$
0^{-m}
$$

Thoroforo tho formula simplifios to

$$
P_{n}=\frac{m^{n}}{n t} Q^{-m}
$$

whoh is known as poisson's formula. In tho following figuro a plot of p_{n}

against n fs shown. of courso, Poisson's formula is dofinod only for intogral valucs of no But aftor plotting thoso intogral valuos ono oan intorpolato tho rost of tho ourvo. It is usual in dotorminations of halfmitos to plot tho froquoney of ocurroneo ph of a givon numbor of counts por soond a against that numbor a and to comparo this plot with Poisson's formala. If a con bo so adustod as to givo a satisfactory fit, ono has thoroby obtainod tho dosirod
value of the oounts per second and has at the same time cheoked the proper statistical functioning of the counter.

If m is vory large, the plot of the poisson formula looks as indioated in the following figure.

The ourvo has now a rathor symmotrical sharpmaximum around the value $\mathrm{n}=\mathrm{m}$ and goes quickly to zero when the deviation of n from m becomes appreatable. In this case, Poissonts formula may be replaood by the Gauss approximation

$$
p_{n}=\frac{1}{\sqrt{2 \pi m}} \theta^{-(n-m)^{2} / 2 m}
$$

This formula can be derived by assuming that $n-m$ is small compared to m, using the Stirling approximation for the factorial, taking the logarithm of P_{n} and expending into a Taylor series near the maximum $n=m$.

The width of the ourve in the above figure can be derined by choosing a velue w. In such a way that one half the erea under the curve lies in the region where $|n-m|$ is smaller then. W. This means that the deviation of m from n has the same probability of being greater or of being less than w. The value of w can be shown to be
$w=0.6745 \sqrt{m}$
Another jnteresting quantity is the average value of $(n-m)^{2}$. Thisis $\sum_{n} p_{n}(n-m)^{2} \sim$
denoting $n-m$ by x and the average value of its square by $\overline{x^{2}}$ and roplasing by an integrel (which is permissible for the large m values oonsidered here)
we obtain

$$
x^{2}=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi m}} x e^{-x^{2} / 2 m} d x=m
$$

Thus the root mean square of $|n-m|$ is $\sqrt{\pi}$. If we have counted m events in a time t, we have an even chance that by repeating the measurement many times the average result will be between $m-0.6745 \sqrt{m}$ and $m+0.6745 \sqrt{m}$ or outside that interval. $0.6745 \sqrt{m}$ is called the probable error and \sqrt{m} the standard deviation. The standard deviation increases with m, the relative standard deviation $\sqrt{m} / m=1 / \sqrt{m}$ decreases with m. If we count 100 events the relative standard deviation of our measurements i.s 10%, if wo count 1000 events the relative standerd deviation is 3.1%, etc.

It is sometimes important to know the probability of an orror equal to a multiple tines the standard deviation. These probabilities are tabulated, e.g. in the Handbook of Physios, 27th edition, page 199.

The quostion sometimes arises what conclusions can be drawn about the docay constant if one finds no counts during the time of observation. It follows from poisson's formula that the probability of finding no counts in an interval In which m counts should have boen expocted is

$$
p_{0}=e^{-m}
$$

A closely connected question is that of the coincidence corroctions to be applied to observed counting rates. Let us assume that a counter takes the time τ to recover. This means that after a count, the oounter remains insensitive for a period τ. If we observe a counting rate $m_{\text {exp }}$, the true counting rate moorr is then given by

$$
m_{\text {corr }}=m_{\theta x p} m_{\operatorname{corr}} t
$$

the exponential factor representing the correction due to the fact that counts are missed if they follow each other at intervals smaller than τ. Assuming that the time τ is short, so that the probability of missing any count due to the above effect is small, one finds that the corrected counting rate morr is
expressed interms of the experimental counting rate mexp by

$$
m_{\text {corr }}=m_{\sigma x p}\left(I+m_{\exp } \tau\right)
$$

More involved problems arise if the substance decays appreciably while the experiment is performed. one practical problem is to find which periods of measurement are best suited for the determination of the half-1ife of the subm stance. One might guess that it will be best to let the substance decey for many half-lives and to talke advantage of the great change in oounting rate which has occurred in the meantime. However, if one waits too long, there is too great a loss of accuracy due to the raduced counting rate and the corresponding greater influence of fluctuations. In the following fighre the logarithm of the counting rato is plotted against the time.

Acoording to the radioaotive decay lav this plot should be a straight line. If one determines its value at points 1 and 3 one might expect a greater aocuraoy in the slope. But this is true only if the measurement at 3 does not become too inacourate as has been indioated in the figure by the vertical Ine. It is found actually that it is best to choose the two points 1 and 2 at which caunting rates are determined one, or one and half, half-lives apart.

The fluctuations whioh wo have disoussod are a consequence of the radiom active docay law. It is thorefore of fundamontal interest to soe whother those fluctuations conform to the predictions. This was found to be the oase whenever measurements wero performed with the necessary procautions. One mistako whion frequently has lod to spurious doviations from tho prodictod law of fluotuations
is to neglect the coincidence correction of the counter.
III. PASSAGE OF FARIICLES THROUGH MATTER
-particles
Measuring deflections of \boldsymbol{a}-particles in electric and magnetic fields Rutherford had established that α-particles are helium nuolei.

The oharacteristic property of the a-rays in which we are here interested, is their definite range. This means thata-particles of a given velooity (for instance \boldsymbol{a}-particles emitted by a thin roil of polonium) will traverse a given distence in air before being stopped. This can be demonstrated in the Wilson oloud chamber.

The Wilson cloud chamber is a chamber containing saturated vapor. Sudden expansion of the chamber causes supersaturation in consequence of adiabatic ocoling. The droplets will then condense around ions formed by the passage of the a-particle thus marking the track of the α-rays. The tracks seen in the Wilson chamber are of quite uniform length.

The stopping of a-particles is due to collisions with electrons. Since the mass of the electron is about 7,400 times smaller than that of the a-particle, the α-partiele is not deflected by such a collision appreciably and its path romains visibly straight. However, the energy lost in such colisions acomulates. It ocours sometimes that an a -particle oollides with a nucleus and suffers a strong deflection. These ovents can be easily seen in the Wilson chamher.

The following figure shows the density of ionization j along the path of an α-partiole. The absoissa x is the distance the α-partiole has

trevelled in air. The above curve is called the Bragg curve. Its last and besto determination is due to Livingston and Followay2). Close to the ond of the range, the Bragg ourve attains its maximum, making about 6,000, ion paths per mm of air. At the end of the range the ionization declines sharply to zoro.

Ionization in air is accompanied by loss of energy. Wach ion path corresm ponds to an energy loss of about 32 OV . This figure is fairly independent of the velocity of the a-particle. Thus the Bragg curve gives not only a measure of the ionization density but also of the onergy lost per mm of path.

It is of great interest to find out the energy loss ofa-particles in other materials than air. Thus it is important to know the energy lost by the a's when entering a chambor or counter through a thin foil. The energy loss or stopping power th various substances is best measured by giving the value of the energy lost if tho particlo traversos a foll whose weight por squaro oontimotor is one milligram. If comparing foils of equal weight, materials with moro highly charged nucloi haro smaller stopping powers.
2) Phys. Rov. 54, 1B (1938).

LECTURE SERTES ON NUCLEAR PHYST CS
Socond Sorios: Rodioactivity Locturor: E. Sogre
IECTURE X: a-PARTICLES AND THETR INTERACTION WITH MATTER

In cloud chambor photographs of an $\boldsymbol{\alpha}$-omitting source, it is ovidont that the tracks oxhibit a moro or loss charactoristic longth, known as tho rango (v. Resotti, p. 303). In the main, the onergy of the α-particlo is dissipatod in collisions with oloctrons; tho path of tho arporticlo is not dofloctod by those many oncountors bocause of the rolativoly groat mass of tho a-particle compared to that of tho cloctron. Upon closo inspoction of the trooks, ono may see tho faint tracks of tho projoctod oloctrons, all having thoir origins in tho hoavy track of the a-particlo. Occasionally ana-track shows a fork-liko structuro; horo tho a-particlo has sufforod a nucloor collision and may bo approciably defloctod, tho path of the struck particlo being tho othor branch of tho fork. A moasuromont of tho anglos and ranges (onorgy) of tho various colliding bodios shows that tho consorvation laws of momontum and onorgy aro setisfiod. Sometimes, one finds that kinetic onergy is apparently not conserved. In these cases an inelastic collision or nuclear reaction has taken place.

The many collisions of an-particlo with electrons result in ion production along its path. The number of ions per unft length is oalled the specific iontzation. A curve (Bragg curve) of specifio iontzation vs range is shown in the following figure.

The specific fonization increases with deoreasing velocity of the aparticle, attains maximum near the end of the path and then drops to zero. (See for a quantitative graph, Livingston and Holloway, Phys. Rev. 54 18, 1938.)

It is evident that the greater the initial energy of the a-particle, the greater the number of encounters necessary to dissipate its energy, henoe the longer its range. A sohematic curve of energy-range relation is given below.

As an oxample, α-particles from polonium have an onergy of 5.298 MeV and a range of 3.842 cm .

Straggling: If the ranges of an initially homogeneous boam of a-particles are messured, one finds values distributed about a certain value, the mean range \bar{R}, with a deviation of one or two percent. A plot of the number, $n(x)$, which have a range greator than x is shown in the following figure.

The value of x at whioh $n(x)=1 / 2 n(0)$ is equal to \bar{R}. The intorsection with the x-axis of the tangent to the ourve at $\overline{\mathrm{R}}$ is the extrapolated range.

The distribtuion of ranges (the phonomenon of straggling) may be explained by the statistical fluotuation of the onergy loss per collision, and
elso because the charge of the a particle varies several thousand times, i.e., as $\mathrm{He}^{+t}, \mathrm{He}+$, He, along 1ts path. These chenges, however, ocour almost entirely an the last few millimeters of range.

The stopping power of a substance is the space rate of energy loss of the impinging partioles as they traverse the substance, io., if $=$ stopping power, $T=$ kinotio energy of particle, $x=$ space coordinate,
$P=-d T / d x$.
Consequently the range R is givon by

$$
R=\int_{0}^{R} d x=-\int_{T_{0}}^{0} d T / F=\int_{0}^{T_{0}} d T / F
$$

The relative stopping power of a substanco is dofined as range in air approximately indepondent of energy. Finally, the mass stopping power is the ber stopping power divided by the density of the substance. The mass stopping power is inversely proportional to the square root of the atomic weight of the substanco. F.g., 1 om of air at 15° and 760 has the samo stopping power as 1.62 $\mathrm{mg} / \mathrm{cm}^{2}$ of AT, $2.26 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Cu}$, or $3.96 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Au}$. Rutherford scattering formula

An Impinging particle of mass m and initial velocity v_{0}, and charge $Z 1$ (in present case, ancepartiole $Z^{\prime}=Z \theta$) approaches a nucleus of charge $Z e$ and, for simplioity, suppose its mass to be infinite. Assuming an inverse square law of force, it is known that the classicel motion is a hyprbole with the
scatterer at one focus. The change from the initial direction of approach to the final direotion of the partiole is the scattering angle θ_{0}. The hypothetioal distance of closest approoch if the parbiole were not deflectod is the somoalled Impact parameter, b of the above ficgure.

From Newtonian meohenics it turns out that
$\tan \theta / 2=\left(2 z^{\prime} e^{2}\right) /\left(\operatorname{mv}_{0}^{2} b\right)$.
Experimentally a beam of particles impinges on a target; the number of particles scattered at an angle θ per unitsolid angle $n(\theta)$ is of intorest. Let n_{0} be the number of incident particles por unjt volume of the beam, and assume at first only one scatterer. The mimber of partioles scattered by an angle between θ and θ d θ will be equal to the number having an impact parameter botween b and $b a b$, related by the above formula. Hence per unit solid angle

$$
n(\theta)=(n 2 d b d) /(2 \sin \theta d \theta)
$$

Using (1), wo can eliminate bdb and obtain:

$$
f(\theta)=n_{0} \frac{2 \theta^{2}}{m v_{0}^{2}} \frac{2}{\sin ^{4}} \frac{1}{\theta / 2}, \quad(\text { taking } Z 1=2) .
$$

If there are \mathbb{N} secterers per unit surface of target, one then simply introm duces the factor N.

October 26,1943

LPCTURE SERTES ON NOCLEAR PHYSICS
Second Series; Rediosotivity

Leoturer: F. Bloch
LECTURE XI: THP THEORY OF STOPRING POWER

We shail calculate the energy which oharged particles lose when passing through matter. Thls energ loss determines the range of charged particlos (e.g., a-partioles or protons). The energy loss is also olosely connected with ionization coused by the charged particle in the substanoe through which it pesses. We shall first discuss the theory of stoping power as given by Bohr. His derivetion uses only the simplest concepts of classial meohanios.

We consider a particlo with oharge Zo and volooity V. It interacts with an atom. More particularly we shall examine the interaction with one olectron of charge and mass m within that atom. The oloctron shall bo bound to an equilibrium position with olastic forcos and shall havo tho vibrational frequency ch The oleotron was originally at rest. We shall ooloulate the amount of onergy ΔT that the oloctron obtains during the passage of the a-particle. The chargod particle must then have lost the samo amount of onorgy, that is, it has changod its onorgy by $-\Delta T$.

In the figuro, the position of tho olectron is shown by tho point designated as 0 . The path of the oharged particlo is ropresontod by the straight 1ino. the distanco botwoen the oloctron and tho charged particle at a cortain timo ts. r.

The minimum value of this distance, that is, the distanco of olosest approach, is equal to b, this distance is called the collision parameter. The angle included by the path of the charged partiole and by r is called ϕ. We shall use a ooordinate system whose x direction coincides with the path of the a-particle and whose y direction is perpendicular to it. At the point of closest approach of the charged particle to the electron we set $X=0$. We furthermore assun that for this point also $t=0$. Then at all other times we have x-vt.

We shall solve the problem of the energ transfer to the electron in an approximato but very simple way. The approximation to be used requires: 1) that the olectron may be considered essentially as free during the time of oolision; and 2) that the displacement of the electron during the collision shail be small compared to the distance of olosest approech b.

In order to see whe ther the first assumption is valid we shall consider the y-oompozent of the force of interaction

$$
\mathrm{F}=\frac{\theta^{2}}{\mathrm{r}^{2}}
$$

This y-component is

$$
F_{y}=\frac{2 \theta^{2}}{r^{2}} \sin \phi
$$

The value of this component is zero at, $t=-\infty$ and $t+\infty$. It has maximum at $t=0$. The width of this maximu (that is the time during which Fy is more than one half tts maximum value) we oall the collision time \mathcal{F}. The condition that the oleotron may be considered as free is fulpilled it τ is small compared to the poriod of vibration $1 / \mathbf{\omega}$. Indeed if this is the case the electron moves during the collision through a distenoe which is small compared to its vibrational amplitude, i.o., the oloctron romans oloso, its equilibrium position. But near the oquilibrium position the elastic forcos are small, they may be negleoted and the electron may bo considerod as froe. Wo shall discuss the
validity of our second assumption later.
In order to caloulate ΔT we shall first compute the momentum given to the electron by the oharged particle. According to our second assumption, the olectron has moved a small distance compared to b and the force will be practically the same as though the eleotron has not moved at all. Under these conditions one sees that the net change in the x-component of the momentum of the olectron, Δp_{x} is equal to zero. Indeed the momentum in the x direction that the electron has obtained while the charged particle was approaching, will be cancelled by a momentum change in the opposite direction that occurs while the charged particle recedes. Thus the only net momentum change is in the y-direction and after the passage of the charged particle the electron is left vibrating in that direction. This momentum change p_{y} is the time integral of the y-component of the force of interaction.

$$
\Delta p_{y}=\int_{-\infty}^{\infty} F_{y} d t=\int_{0}^{\pi} \frac{z e^{2}}{r^{2}} \sin \phi \frac{d t}{d \phi} d \phi
$$

Substituting

$$
r=b / \sin \phi ; \frac{d t}{d \phi}=\frac{b}{\nabla} \times \frac{1}{\sin ^{2} \phi}
$$

one finds

$$
\Delta p_{y}=\frac{Z e^{2}}{b v} \int_{0}^{\pi} \sin \phi d \phi=\frac{2 z e^{2}}{b v}
$$

The corresponding ahange in kinetio energy is

$$
\Delta T=\frac{1}{2 m} \quad\left(\Delta p_{x}^{2}+\Delta p_{y}^{2}\right)=\frac{2 z^{2} e^{4}}{m b b^{2} v^{2}}
$$

This formula holds as long as $b_{\min }<b<b_{\max }$ If b is outside this region, the assumptions made above are not valid.

We shall eqleulate now the onrgy lost by the particle when passing through a distance Δx. Lot us assume that there are N electrons per contimoter oubed. In a cylindrical shell of length Δx, inner and outer radii b and
$b+d b$ there will be $2 \pi b d b \Delta x \mathbb{N}$ electrons. The energy transferred to the se electrons will bo

$$
\Delta T=N \Delta x \cdot \frac{4 \pi 22^{4}}{v^{2}} \int_{b_{\min }} \frac{d b}{b}=M \Delta x \frac{4}{m} \frac{z^{2} 0_{0}^{4}}{v^{2}} \log \frac{b_{\max }}{b_{\min }}
$$

From this equation the energy loss per centimeter $\Delta T / \Delta x$ may be obtained as soon as the values of $b_{\text {min }}$ and $b_{\text {max }}$ are determined.

Discussion of bring
For b our approximate formula would give $\Delta T=0$ which is
Incorrect. Actually the maximum velocity a free electron may obtain in a collim sion is $2 v$ and therefore the maximum energy loss is

$$
\Delta T_{\max }=\frac{m}{N^{2}}(2 v)^{2} \quad \Delta T_{\text {max }}=\frac{m}{2}(2 N)^{2}=2 \text { min }^{2}
$$

If we those - b in such a manner that the calculated energy lass shall be equal to this maximal energy loss, then this value of b will mark the limit beyond which the approximate value of the energy loss can no longer be used. At this value of b, the assumption that the electron has been displaced during the collision through a distance small compared to b is no longer valid. This value of b we shall choose as $b_{m i n}$ we obtain

Rutherford formula for the scattering of the charged particle by the electron. This treatment gives

$$
\Delta T=N \Delta \times \frac{4}{N} \frac{2^{2} \theta^{4}}{v^{2}} \int_{0}^{b_{\max }} \frac{b d b}{b^{2}+\left(22 \theta^{2} / m v^{2}\right)^{2}}
$$

In the oase that
b) $\frac{2 e^{2}}{m v^{2}}$
the second term in the denominator oan be neglected and the integral reduces to the simpler forin which has been used above. At small values of b the integral goes to zero. This gives a qualitative justification for using the simpler integral and for outting off the integration at

$$
b=b_{\min }=\frac{Z \theta^{2}}{m v^{2}}
$$

Discussion of $b_{\max }$
For too large values of the collision parameter the eloctron can no longer be considered es free. In fact, the collision time is approximately Ta b/v and this time will bocome greater than the vibrational period of the electron $1 / C u$ when becomes surciciently large. For large values or b, that is, when $\mathrm{b} / \mathrm{v}\rangle>1 / \omega$ the variation of the force of interaction between charged partiole and electron is slow compared to the tibretional frequency. In this oase the Interaction between the charged partacle and the electron mey be treated by the so-called adiabatio approximation. In this approximation, the electron is displeced when the charged particle approoches but when it recedes the elootron is eased beck into its original position without it taking any energy. It is therefore justified to extend our integral to the point where $b / v-1 / C U$ and to neglect oontributions from greater b values. Thus we have $\mathrm{b}_{\max }=v / \omega$
Substituting the values of bmax and $\mathrm{b}_{\mathrm{min}}$ into the energy loss formula obtained above, one finds

$$
\frac{d T}{d x}=N \frac{4 n Z^{2} \theta^{4}}{m v^{2}} \log \frac{m V^{3}}{Z \theta^{2} \omega}
$$

As has been pointed out this formula is only appoximate. The oaloulation has boen carried out by Bohr rigorously and he obtains

$$
\frac{d T}{d x}=N \frac{4 z^{2} \theta^{4}}{m v^{2}} \log \frac{1.123 m v^{3}}{Z \theta^{2} \omega}
$$

The condition that is nooessary for the validity of this formula is that there be a range of $b-v a l u e s$ in which $b \gg b_{m i n}$ and $b \ll b_{m a x}$ It is therem fore necossary that $b_{m i n}<b_{m a x}$ This means that

$$
\frac{Z e^{2}}{m v^{2}}<\frac{v}{\omega}
$$

or

$$
\frac{z e^{2} \omega}{m y^{3}}<1
$$

One sees that the Bohr formula is valid only if v is sufficiently large. As am example we may consider the a-particles of RaO. Their velocity is $v=1.92 \times 10^{9} \mathrm{~cm} / \mathrm{sec}$. For ω we may use the frequenoy of the outermost electrons that is an optical frequency of $\omega=10^{16}$ sec-1. This givos

$$
\frac{2 e^{2} \omega}{\mathrm{mv}^{3}}=3.10^{-4}
$$

We see thorefore that in this case Bohris formula is valid.

October 28; 1943
LECIURE SERIES ON NUGLEAR PHYSICS
Second Series: Radiaotivity
Leoturer: F. Bloch
LECTURE XII: THE THEORY OF STOPPING POWER (CONIINUED)

In deriving the formula for the stopping powor, it has boen asumed that olectrons in atoms move like harmonic oscillators Aotually, thoy are not subjeot to harmonic forces, but rather to Coulomb foreos. Bohr hed assumed harmonfo oscillations bocause in that case alone does classioal theory give rise to sharp lines as are observod in spectra.

It oan be shom in quantum treatment that intoraction of light with atoms may be desoribed as the interaction of light with a series of virtual oscillators. This means that instead of an assombly of atoms we might actually consider an assombly of harmonic oscillators whose frequencies are oqual to the absorption froquencies of tho atoms. If wo have n atoms por oubio contimetor wo must roplace these atnoms with nf i osoillators with tho absorption froquonoy w_{j} Tho quantjty f_{i} is called tho osollator strongth and satistios tho sum rulo

$$
\text { Ifi }=z_{0}=\text { total numbor of olectrons in an atom. }
$$ This moans that tho total numbor of oscillators of various froquoncios is oqual to tho total numbor of oloctrons actually prosent in tho body.

If a chargod particlo movos past an atom, it acts on tho eloctrons of the atom by virtue of its oloctric fiald. A light wavo too would act on an atom by its olootrio fiold and it is thoreforo justifiod to roplaco tho atoms by oscillators and thon use the formula for tho onorgy loss whioh wo had dorivod. In this way wo obtain tho following formula

$$
-\frac{d T}{d x}=\frac{4 \pi o^{4} z^{2}}{m v^{2}} n \int_{1} \int_{\max } \quad f_{1} \frac{d b}{b}
$$

i
$b_{\text {min }}$

Horo p donotos tho numbor of atoms por oubic contimotor. For tho uppor limit wo may uso tho samo expression as was dorivod in classioal thoory, namoly,

$$
b_{\max }^{1}=v / \omega_{j}
$$

Tho lowor limit

$$
b_{\min }^{1}-20^{2} / \mathrm{mv}^{2}
$$

howovor, must bo changod. This classioal lovor limit has tho following significance. If wo considor tho kinctic onorgy of tho oloctron the framo of roforono whoro tho chargod particlo is at rost, thon bin is the distance at Whioh the potential energy between the electron and the charged particle becomes equal to that kinetic onergy. Now in quantum meohanios a closer approach between electron and charged partiole than the de Broglie wave length is meaningLess and we have to use therefore for the lower limit

$$
b_{m i n}(q u a n t u m)=N / m v
$$

This is indeed so te the lower limit in quentun theory hes a highor value than the previously derlved clessical lover limlt, becauso ad any approoch closer than the quantum lower-limit defraction phenomena will occur and make an effective approoh inpossible. If however, the olassical lower-limit should turn out to be greater, then down to that lover limit, classical theory is applioable and the classical ower-limit should be used. Thus, the olessical or quantum lower-limit must be used according to whether the ratio

$$
\frac{b_{\min }(\text { olassical })}{b_{\min }(q u a n t u m)}=\frac{2 \theta^{2}}{n t}
$$

Ls big or small compared to untty, Assuming $Z \theta^{2} / \hbar \tau=1$, one obtains for the onergy loss

$$
\frac{d T}{d x}-\frac{4 \pi \theta^{4} z^{2}}{m v^{2}} f_{i} \log \frac{2 m v^{2}}{k \omega_{i}}
$$

The formula gatually given contains the numerical factor 2 under the logarithm
which factor does not follow from our argunent but must bo obtained by a more detailed calculation.

The stopping power just given is valid if the following three oonditions are fulfillod;
(a) $v / \omega_{1} \gg r_{0}$
(b) $Z e^{2} / \hbar v \ll 1$
(o) $m v^{2} \gg \hbar \omega_{j}$

Condition (a) means that at the upper limit where we hove made use of the frequency of the electron, the distance of the charged particle of the atom should be great compared to the atomic radius r_{0}. This condition is necossary in order thet the electric field of the charged particle should be homogeneous over the ator whenever the oscillator treatment of the electron has been made use of Unless this condition is satisfied, the analogy to the interaotion with light and the treatnent by virtual oscillators breaks down. Condition (b) means that the quantum lower-init is greater then the classioal lover-limit and that therefore the quantum lower-limit should be used. Finally, condition (c) expresses the requirement that the upper limit of b must be oonsiderably greater than the lower limit of b and that therefore there shall be a region in which our approximations are valid.

Conditions (a) and (c) both mean numerically that the velocity of the incoming oharged partiole must be great compared to the velocity $V_{e l}$ of the olectron with which the charged particle interacts. For condition (a) this is seen readily boccuse row is equal to $v_{o l}$. In condition (o) one may replace hwif (that is, the exoltation energ of the electron) by twice the kinetio energy of the olectron which is a quantity of the same order of magnitude. Then (c) reduces to

$$
m v^{2} \gg v_{\theta 1}^{2}
$$

which again means that $v>V_{e l}$. Condition (b) is also satisfied if $\left.v^{\prime}\right\rangle V_{e}{ }^{\circ}$ provided that z is not great oompared to 1. This is so because $\theta^{2 / t v e l}$ is about equal to 1 for the outermost electrons and is smaler than 1 for all other eleotrons.

If v and $v_{e l}$ become omparable, our treatment is no longer valid and an exact treatment for this case has not yet been carried out. The theoretical difficulties are paralleled by a complioated behavior of the charged particles at relatively slow velocitios. If their velooity bocomes oqual to the velocity of the outermost electrons in the slowing down medium, then the oharged partioles may pull out electrons from the slowing down medium, attach them to thenseltes, and thus reduce their offective oharges. In later collisions these charges may again be lost. Whilo the charged particle hed its charge roduced. its ionizing powor and onergy loss will also bo smallor. Since various charged particles will spend various times in the state of reauced charge, the actual range of the individual particles will differ. This dixforenco of rango is oalled straggling.

If an coparticle has an enorgy of 72 kV , then its velocity is the same as thet of an electron with 10 eV. This is the average of the outermost electronso. Thus, we must expect that our formula of stopping power for a-particles becomes ingplicable under 72 kV. Actually, serious deviations from the formula start at the somewhat higher energy of 200 kV . The correspondiag limit for deuterons 1 s at 100 kV and for protions at -50 kV .

From the tormula of the stopping power an estimate of the range of the particles can be obtained. For this purpose, we replace the energy loss $\mathrm{d} T / \mathrm{dx}$ by the change in kinetic energy of the particle $-\mathrm{dE}_{\mathrm{kin}} / \mathrm{dx}$. The formula for the stopping power then gives the proportionality

$$
-\frac{d E_{k i n}}{d x} \sim \frac{1}{E_{k i n}} \log \frac{E_{k i n}}{\operatorname{const}}
$$

Forgetting about the logarithmic factor, one obtains

$$
\mathrm{E}_{k i n} \frac{\mathrm{~d} \mathrm{E}_{k i n}}{\mathrm{dx}}=\frac{1\left(\mathrm{E}_{k i n}^{2}\right)}{\mathrm{dx}}=-1
$$

This formula shows that the quantity Exin ohanges at a constant rate along the path of the particle and that therefore the range should be proportional to the square of the original kinetic energy. Actually, the range varies with a somem what lover power of the original energ. This is due to the logarithmic faotor in the stopping pover formula.

A quantitative evaluation on the stopping pover formula requires knowiedge of ell absorption frequencies and all oscillator strengths. These quantities can be given in an analytic form for the hydrogen atom and in this case the required caloulations have beon carried out.

For heavy atoms one may use a orudely simplified statistioal model. This model oonsiders the eloctrons as a gas, the kinetic energy of the olectrons being belanced by the average electrostatio potentiat thtin the atom. one may find the oscillation frequency of this gas by hydrodymmin caloulation. one then may use that frequency instead of ω_{i} and use the dNal mumber of eleotrons in an atom Z_{0} instead of the osollator streneth f^{2}.

The vibrational frequency in the statistioal model will be given by the "sound velocityl" divided by the atomic radius. Tho atraie redius can be shom to vary as $2_{0}-1 / 3 *$. The sound velocity is of the same ordor of magntude as the average velooty of the electrons and that as proportional to $Z_{0} 1 / 3$. Thus we obtain

$$
\frac{d T}{d x}=\frac{4 \pi e^{4} z^{2}}{m v^{2}} z_{0} \log \frac{2 m v^{2}}{k V_{0}}
$$

In this formula, R is the somcalled Rydberg frequenoy, that is $\hbar R$ is the W This means that hoavior atoms have smaller atomic radil wich is in contradiodiotion to the experience about atonic radi as customarily defined. However, in the custonary definition the atomic radius is essentially given by the orbits of the few outermost electrons whereas in our present discussion the radius is the average distance of electrons from the nucleus, the average being taken over all electrons.

Lonization energy of the hydrogen atom, and k is a numerical factor: Instead of coleulating it, one may adjust it in such a vay os to give agreement betwoen the formula and the experience for one hoavy atom, for instance for gold. Then the formula describes the dependence of the stopping power on the atomio number in a satisfactory way,

The formule for the stopping power of oleotrons is the same as the form mula for other charged particles with the exoeption that under tho logarithm the Pactor 2 does not appoar:

$$
\frac{d \tau}{d x} m \frac{4 \pi \theta^{4} z^{2}}{m v^{2}} \Sigma_{1} \frac{m v^{2}}{\hbar w_{1}}
$$

This is due to the faot that in determining the lower limit of b the de Brogite wave longth must bo used which corresponds to the velooity of the atomic eloctron In a frame of referenoe where the conter of gravity of that elootron and the oncoming charged particle is at rest. This volooity is practically equal to the velocity of the onoming partiole as long as that oncoming particle is heavy, hut if the particle is an electron itself, the velocity in the center of gravity system is one half the velocity of the oncoming electron. In the case of fast B-particles and of oharged cosmic-ray particles the motion of the oncoming particle must be treated acoording to relativistio mechanios. This will have two consequenoes: 1) the ragion in which the electric field aots is contracted by the Lorentiz factor $\sqrt{-\mathrm{v}^{2} / 0^{2}}$. The time during which the fiteld acts is shortened by the same factor; 2) the strength of the eleotric field is fncreased by the reoprocal of the Lorentz factor Therefore, the momentum and energy transferred to an lectron during the collision remain the same as in unrelativistic theorye Horever, the Imits for the oollision parameter b ohenge. The upper Iimit is inoreased by the reciprocal of the Lorentz factor because, due to the Lorentz contraction, we gan go to greater distances before the collision time becomes as long as the period of the atomie electron. In the lower limit the De Broglientrave length must again be used which is given by

$$
\frac{\hbar}{\text { momentum }}=\frac{\int^{\hbar} \sqrt{1-v^{2} / 0^{2}}}{\text { mv }}
$$

and where m is the restmass of the eleotron. We see however that this limit is no longer

$$
\frac{\hbar}{n v}
$$

but is shorter than this length by the Lorenta factor The rerore the square of the Lorenta factor will appear in the conominator of the logarithm in the stopping power formula,

$$
\frac{d T}{d x}=\frac{4 \pi o^{4} z^{2}}{m v^{2}} n \sum_{i} \log _{1}\left[\frac{m v^{2}}{\hbar u u_{1}\left(1-v^{2} / e^{2}\right)}\right]
$$

It should be remarked that the first factor of this formula is no longer inversely proportional to the onerg of the oharged partiele Indeed for high energies mv ${ }^{2}$ in the donominator anproaches the oonstant value mve thus this factor ceases to decrease while the logarithmio paotor increases due to the expression $1-v^{2} / c^{2}$ in its denominator. Thus the stopping porer has a minimun as shown in the figure.

For electrons this minimum is obtained at about 1 MV.
The stopping power formula for oleotrons is difficult to compare th th experiments due to variation in the ranges of jndividual eleotrons that is due to straggling. In the case of electrons. straggling is caused however by
ontirely dfferent reasons than have been disoussed in the oase of hoavy particles. These reasons are 1) that the electron mey lose in one oollision a very considerable part of its energy with a rather high probability and therefore a statistioal treatment of the energy loss le loss justified than in the oase of heavy partioles, und 2) olectrons may be deflocted appreciably in collisions with other electrons and nuclei and so the path of the eleotrons is much less stralght than the path of the heavy particles, and, for oxample, in the perpendicular transtersal of a plate does not correspond to the thiokness of this plato.

LECTURE SERIES ON NUCLTAR FHYSICS

Second Series: Radiooctivity \quad Leoturer, F, Teller
LBCTURE XIII, INTMRACTION OF CIARGED PARTTCLES WITE MATITR

In the previous leoture it ras shown that, apart from other factors, the (speoe) rote of energy loss of a moving oharged partiole (ocpartiole was the example) was inversely proportional to the square of the velocity v of the partiole. This factor arises becauso the momentum transferred to an eleotron is proportional to the "time of oollision" wich in turn is inversely proportional to the particle velocity. Honce a particle of initial onergy loses onergy at a rate $-1 / E$ and its ronge should therofore be EE^{2}. Expertmentally, howovor, the range is more nearly $\operatorname{cA}^{3} / 2$. The disorepanoy may be romoved by a nore oritical examination of the onergy loss oquetion. It will bo rocalled that the incidont artiolo will transfor onerg to tho atomic oloctrons if its volooity is greator than tho olectron volocitios. Approximatoly, tho numbor of oloctrons In an atom which havo volocitios smallor than V, and on thoroforo rocoivo onorgy from the particle, is simply proportional to V (providod v is in tho range of oloctron volocitios). Consoquently, the rate of energy loss is novr

It $1 s$ of intorost to noto that tho onergy loss por unit length of path depende on the speed and ohorge of the incident particle. Particles of the same speed Lose energy at a rate proportional to square of their respective z s so that o 4 MV a-particle $(Z=2)$ has the same range as a 1 m proton $(Z=1)$.

The energy whioh is token from the inoident partiole may be used to eject an electron from atom (ionization), or may only produce electronic excitation with subsequent omission of a light quantum (ege, scintilations observod
in detection of α-particles). Another possible process, and of considerable importance in confection with bialogidal effects of radation is moleoular excitathon with subsequent dissociation into atoms or 10ns Taking into account these various processes together with seoondary effects, one finds that the average energy per ion pair is roughly 30 eV. An approximate measure of the biologioal effects of radiation on a part of the body is the amount of energy absorbed by the particular region. There are, of ourse, qualitative dicferences, because the density of ions is quite different along paths of various japinging particles, so that reoombinetion prooesses may be of another character in the case of, say, a heavily ionized a-traok os compared to a weak $\boldsymbol{\beta}$-track. Ionization by heavily charged particles.

We have seen that the Bragg curve of an a-particle, a measure of the specific ionization along the path, increases slovily to a meximum and then drops sharply to zero, The corresponding ourve for fission partioles shows only a decrense in speoific ionization along its path. What is the explanation for the dinemenoo? The initial velooity of a fission partiole is opproximately $10^{9} \mathrm{~cm} / \mathrm{sec}$. One con ostimate its initiol oharge becouse the fission fragment will shod all the electrons having velocities smaller than its ovn. As it procoods along its po th, the particlo will plok up oloctrons, as a result the speoific ionization will tend to deorease At approximntely 1 MV , the particle becomes heutral; its path as a charged particle is about five to ton times longer than the distance it travels as a neutral partiole. The range is about 20 m . tn air.

Stopping of Rlectrons.
It is difficult to ascribe a range to electrons traveling through natter because of the excessive straggling In contrast to the essentially straight prith of an a-particle, an electron moy be considerably defleoted in a collision, so that it will have a more or less random path. Secondly, the
energy spoctrum of β-particles emitted from nucleus is not monochromatic (as in the case of α 's) but has a considerable spread. The combined effect gives a range distribution which imitates an exponential absorption curve.

There are several processes by whioh the onergy of a fast moving eleotron may be dissipated. When an electron pesses through the electric field of a nucleus, it is accolerated, This acceleration gives rise to radiative energy lasses (bremstrahlung). They are appreciable for electron energies of several Mev. The electron-electron radiative losses are quite small inasmuch as there can be no dipole, but only quadripole, radiation.

The electron suffers energ losses in its collisions with eleotrons. An approximate formula has been given for this rate of energy loss, and we have seen it depends on the square of the etomie number of the nuclei. In these collisions, all of the atomicelectrons partioipate and ionization in the traversed material is produced. The ratio of lonatation loss to radiative loss is given roughly by

$$
\frac{\text { Rate of ionization } 10 \mathrm{~s}}{\text { Rate of radiative } 10 \mathrm{~s}}=\frac{z \text { (mev) }}{800}
$$

where Z is the atomic number of the material, E is the kinetic energy in million electron volts.

To give an idea of how much shielding is nocessary to stop β-particles, one may give an example. For aluminum $100 \mathrm{mg} / \mathrm{cm}^{2}$ will stop 100 kv betas, and $1 \mathrm{~g} / \mathrm{cm}^{2}$ will be adequato for 3MV betas. It is approximately true that the stopping power per unit mass is the same for all the elements. Reflection or β particles.

Coefficients of refleotion between $1 / 10$ and $1 / 2$ are quite usual. Heavy nuclei by virtue of their charge are more effective in producing large angle scattoring than light nuclei. Hence pb reflects β particles much botter than, say, paraffin.

LECTURE SERIES ON NUCLIAR FHYSICS

Second Series: Redioaotivity
Leoturer: E. Teller

LECTUR XIV: TYTPRACTION OF RADTATIONS MIME MATIER

An exanination of a fission partiole track reveals branching tracks that originate from the roin track. These secondary tracks are short and are especially numerous at the ond of the prinojpal track, the resulting appoaranoe being life a tuft of an arrow. To interprot this behevior, let us consider the ratio of onorgy transfer to a nuoleus and to its surrounding eloctrons. If Z_{2}, Z_{2} aro the atomic numbers of stopping and fragnont iuclei respectively, the rato of onergy transfor to a nuclous or mass M is proportional to $\frac{z_{1}^{2} z_{2}^{2}}{1}$. In the oloctronio collision, it is the offeotivo charge Z_{2} of tho fission fragmont that is oonsiderod in tho rato of onorgy loss, henoo for this type of collision, the rato is proportional to $Z_{1}\left(Z_{2^{\prime}}\right)^{2} / \mathrm{m}^{0}$, sinco thoro are Z_{1} oloctrons por nuclous. The ratio $z_{1}(m / r)\left(z_{2} / z_{2}\right)^{2}$ will incroase considerably noar the ond of the fission partiolo traok bocause tho offootivo ohargo docroases; henco tho rolatite rato at which onorgy is lost by nuoloar collisions incroasos markodly noar the ond of the traok. Throughout the traok the ratio is groator than it is in oaso of O-partiolos. Honoo branchings duo to nuoloar collisions aro moro froquont. Intoraction of γ-rays with mattor.

The main sourco of cnorgy loss of prays is intoraction with olootrons. Howovor intoraction with nuoloi has boon obsorved. ono oxamplo is tho nucloar photooloctrio disintogration. Two instonces may bo giton:

$$
\begin{aligned}
& D+7 \rightarrow n+p \\
& B O+7 \longrightarrow n+2 \alpha
\end{aligned}
$$

In partioular, tho first roaction is important booause it givos information concorning the binding onorgios and foroos botwoon alomentary partiolos. Crosssoctions for thi type of roactions aro ralativoly small, boing of tho ordor of $10^{-27} \mathrm{~cm}^{2}$ or smallor. Tho two roactions oitod abovo roquiro rolativoly low 2 -onorgios, 1.0. about 2 Mov . Most nucloar photooffocts requiro $5-8 \mathrm{Mov}$ 2 -roys.

The interation of \mathcal{Z}-rays with matter are in the main interactions with electrons. The phenomen may be described as the photo-electric effect, Compton scattering and pair production. We shall see that the various interactions depend differontly on nuclear charge and the energy regions in which each effeot becones important is more or less well derined. Photoeleotric effect.

A bound electron absorbs energy and leaves the atom. Most of the energy of the 2 -quantum is given to the electron, most of the momentum is given to the rosidual positive fon. Tach shell on electrons around a nucleus will contribute whose onergy is smaller than the energy of the γ-quantum. Among these the shells whose ionization energy js closest to the energy of the p-ray makes the greatest contribution. χ-ray energies are usually greater than the ionization energy of the \mathbb{K} electrons so that the innermost shells have the largest effect.

For surifeiently energetio η-rays, the photoelectric absorption coeffioient goes as $Z^{5} / \gamma^{7 / 2}$ where Z is the atomic number of the absorbing nucleus and E_{γ} the \geqslant-ray energy. This formula indicates a very great difference between the respective coefficients for Pb and C. There is actually a great difference in absorption coefficient in the region where photoelectric effect is the main source of absorption. This is the X-ray region. Comption Effeot

The megnitude of the scattering of a photon by an electron oan be
estimited by classion arguments. In this soattering prooess, the bound eleom trons behave as though they were free. If E is the magntude of the eleotrio vector, m the leotronto mass, and \ddot{x}_{0} the ocoleration, then

$$
\ddot{x}_{e}-\frac{E}{m}
$$

It is thio acoloration whioh gives rise to the soattored radiation. From class Leal theory, we know

W F enerey enttted per seo per on $\mathrm{om}^{3}-\frac{\mathrm{Ze}^{2}}{3} \mathrm{X}^{2} \mathrm{C}^{3} \mathrm{~N}$
Substituting from above for \ddot{x}, ane gets, for Noctrons/cm ${ }^{3}$

$$
w=\frac{z^{4} e^{2}}{m^{2} c^{3}}
$$

The 1ncident energ densty per seoond is (m/4N) C. Hence the fraotion, or scatterins ooeffiolent is $(8 \pi / 3)\left(\theta^{2} / \mathrm{mo}\right)^{2}$ No Now $\theta^{2} / \mathrm{no}^{2}$ is the olassical oloctron radis, so approximately the electrons soatter as though they wore discs of radius $\approx e^{2} / \operatorname{mo}^{2}$. T \boldsymbol{r} must bo less than mo in this approxination. Ktoin and Nishina have derived a relativistio treatnent whon holds for En greater than mo 0^{2}. Then the scattering cross-section fals ofe appoximately as $1 / \mathrm{r} \boldsymbol{\gamma}$, while for E Y (U0 the oros-seotion was independent of V^{2}.

In the Conpton effect a γ-quantum not only changes the direotion of Its motion but olso loses some energy. This energy loss 1 s parthoularly signt-
 proof of the conservation laws of energy and noinentun in a single process, rather than as an aterage over many proosses.

Pair Produetion.
In this process, a γ-ray disappears, an lectron and a posatron appear. On the theoretical side, the pioture is a continuum of hegative onergy lovels fllled with oloctrons. The hichost energy is -mo. Above this, separated by $2 m 0^{2}$, begins another continum of posithvo energios. Dirac postulated that
all the flled negative energy levels are not detootablo. However, when one of these olectrons gis gen an enorgy in exoose of 2me2, it oould get into the positive energies and boome an observablo eloctron. The "hole" left would thon behave as an eloctron of opposite oharge. A short time after the proposal on this theory, this "hole" in the sea of eloctrons or what is now oallod a positron, Was found experimentally; it was also found that pair production required at least onergios \geq 2nc 2 in agroement with the ory. The process of pair produce tion roquires the prosonce of a nuelous to satisfy tho oonsorvation laws of onergy and momentun. Peir production inoroasos slowly with onergy, approximately as the locarithm of the onergy,

To sumnarize: One oal say that the photoolectric offect 1 s important at low onergies and deoreasos rathor rapidly with inoraasing onergy, tho Compon soattering then booming important. At still highor onergios, the Conpton soattorine decroasos, but then pair production beomes important, so if one wore to plot graph of tho sum of the cross-sections as a function of γ ray onery one would obtain a ourve like that shown in the fldure below.

$$
\begin{aligned}
& \text { (0.2) Compton offoct } \\
& \text { (p.D.) pair produation }
\end{aligned}
$$

For Pb the ninimun occurs at ebout ary for Cu and A1 at about 10 and 25 INV respotively.

Novomber 9, 1943
LECTURA SERTES ON NUCIFAR FHYSICS
Second Series: Radioactivity Leoturor: Ee Sogro

LECTURE XV: THE PROPERTIES OF NTCLET

The properties of nuolel may bo discussod undor the following hoadings: Chargo, Mass, Sizo, Donsity, Spin and Magnotio Momont, Statistios. Charge

The most diroot method of measuring the oharge of nuclei is by moans of the Rutherford scattering. Howevor, this mothod is not very eccurato. A more acourate detormination uses tho roseloy law relating tho frequency of the K Iinos in the X-Ray spoctrum to tho ohargo of tho nuoloi Mo olomonts Kafnium and Rhonium wore discovorod in this mannor of oourso, tho most froquont mothod. of dotormining tho nuclear chargo is by ohomical analysis since as it hes been montionod, it is tho chargo of the nucleus that dotorninos tho ohomical properties of tho atom.

Mass of tho Nucloi
An accurate dotormination of tho masses is of intorest, bocauso it givas information on onergios of the nucloar roactions. This is posoiblo bocauso of tho conootion botwon nucloar onorgy and nucloar mass in that tho onorgy is obtainod from tho mass by multiplying tho latoor wh tho squaro of tho light velocity.

Up to 1935, Aston had a monopoly on accurate dotorminations of nucloar massos by tho help of tho mass spootrograph sineo thon, improvod mass spootrom graphs have boon construoted by Bainbridgo, Jordan and Mattauoh. The prosont aocuracy of tho mass dotormination can bo 11 lustratod by tho statemont that tho rost onorgy of nituogon can bo dotorminod mass spootrographioally to within an
uncertainty of 10,000 electron volts. This accuracy oompares favorably with that of good optioal spectrographs.

The method of mass deternination utilizes comparisons between jons of nearly equal masses such as:

$$
\left(0^{16}\right)^{+}\left(M^{14} H_{2}\right)^{+(}\left(c^{12_{H_{4}}}\right)^{+}
$$

Differences of these masses are then measured. For acourate measurements, it is best if the ion concentrations in the discharge are so matched that their intensitios are approximately equal.

The scale of neasuring masses used in physiós jas based on the isotope 016. The mass of this isotope is set equal to e.ccurately, 16 units, then one mass unit corresponds to 930 Mev. This quantity might be compared with the mass of the electron which corresponds to .51 Met .

In chemistry, it is usual to set the atomic weight of the natural isom topic oxygen oqual to 16. In this caso, the unit of nuclear masses is 1.66035 $\pm .00031 \times 10^{-24}$ grams. In discussing atomio masses, the mass defect is of interest. It is defined as M-A, where M is the mass measured in the physical scale, and A is the integer number olosest to 1 and is called the mass number. A further quantity frequently used is the packing fraction thioh is deffned as $\frac{M-A}{A}$.

In the following figure this packing fraction is plottod against the nuclear chargo.

The best figure or this kind is found in the artiole of Hahn and Mattauch, Physikalische Zeitschrift, 1940. The packing fraction has a minimun at about $z=50$.

Another method of determining masses is by belancing reaction energies. For instance, the mass of the neutron has been determined in this maner. This mass, of oourse, could not be determined in the mass spectrograph beoause neutrons oannot be derlected in the electromagnticields of that apparatus. For the deternination of the neutron mass the reaction

$$
\mathrm{H}_{1}^{2}+\mathrm{hv} \rightarrow \mathrm{H}_{1}^{2}+\mathrm{n}_{1} 0
$$

is used, Knowing the mass spotrographic values of the mass for $H_{1}{ }^{2}$ and $H_{1}{ }^{2}$ Which are 2.0147 and 1.00812 and using tho mindmun energy 2.17 llov at which the light quantum can cause disintegration, one finds for the mass of the neutron 1.00812. In many other oases, crossmocels are possible by using mass speotrocraphic values of the masses and data from nuclear roactions. Size of IVuleus

One may determine the size of atomic nuclei from various reaotions, some of these, however, like reactions of capture of slow neutrons, give erratic values. The actual size of the nucleus can be defined as the radius to which specific nuclear forces extend, and is usually obtained by investigating the deviations from the Rutherford scattering or by tinvestigating the potential barrier effects in a-decays and other nuclear reactions involving charged partioles. one finds that nuclear radii are given approximately by $1.4 \times 10^{-13} \mathrm{~A} / 3$. This mans that the nuelear volume is proportionate to the nuclear mass. Muclear Donsity

It follows that nuclear densities are approximately the same for different nuclei.

Wuclear Spin and Magnetic Monent
Many atomio nuclei possess angular momenta or spins. These spins were
first discovered in a structure of spectral lines which is called hyperfine struoture. These structures were first observed at the end of the last century, but their explanation by Pauli and their more detailed study goes beok only two deades. The explanation of the hyperfine structure is as follows: The orbital motion of the electrons produces magnetic flelds. These interact with the magnetic moment associatod with the nuclear spins. The internotion energy modifies the sprectral lines in a different way, according to the orientation of the nuclear spin in the magnetio field of the electronic motion; thus the lines are split. From the number of the components, the spin may be determined, while from the size of the spliting, the nuclear magnetic moment may be calculated.

Data on magnetic spins and megnetio moments have been summarized up to 1939 by Korsching (Zoitschrift fur Physik).

A new method for the determination of the spin and megnetio moments has been developed by Storn and Rabi. This method uses atomic or molecular boams passing through statio and oscillating magnetic fields. The mothod is more direot than the one involving the hyperfine structure. Bloch and Alvarez have determined by this method, the magnetic moment of the noutrons which, of course could not be determined by the use of hyperfine structure. The following table sumarizes the rosults for the neutron, the proton and the deuteron:

		spin
A	$1 / 2 ?$	-1.93
H^{1}	$\ddots / 2$	2.78
H^{2}	1	0.855

The spin of the neutron has been assumed as $1 / 2$. This value fis probable, but not quite oertain. The magnetic moments are measured in units of

$$
\frac{e h}{4 \pi{ }^{1 / 0}}
$$

Where \mathbb{M} is the mass of the proton. The minus sign in the magnotic moment of
the neutrons indicatos that the magnetio moment of this particle has an opposite diroction as would be expected from rotating positive charge.

Statistifos

Wuolear statistios show up in spoctre in the scattering of nuctear particles and le some cases (lule thet of ortho-parahydrogen modifjoations) in physio-chemioal proportes 1 ilso spociffo heat. It will surfioe hore to say that two kinds of statistios are known - the Bose statisties, whoh sexpected to hold for nudei containgng an even number of particles, and the formi statisties whoh sheuld hold in the number of pertioles within the nuolous is odd.

It Is of historical interest that before the discovery of the noutron, nucle were supposed to bo composed out of protons and oloctrons, thus N^{14} was supposod to contain 14 protons to make up $1 t \mathrm{t}$ mass, and 7 oloctrons to componsato the 7 excess charges. Thus, one expeoted this nuoleus to contain on odd number of particles end to bohave according to Femins statistios. Pasettis speotrographic studies showed that \mathbb{N}^{14} bohaved acoordig to Bose statistios. Acoording to tho newer viovs, NI4 oonsists of 7 protons and 7 noutrons, that is, it oontains an even number of particles, and one understands why it obeys the Bose statistlos. It follows from the prosent pioture that nucloi with ovon mass numbers contain an ovon numbr of particles and behave according to Boso statistios. ono may add that they also havo an evon spin. on tho othor hond, nuclod with an odd mass number, oontain an odd number of partioles and bohavo acoording to Formis stathistios, end have an odd spla (co units $h / 2 \pi$).

We have just soen that tho proportios of N^{14} indicate that this nuoleus Is composed of noutrons and protons rather than of grotons and electrons. Originally the lattor hypothesis wa acoopted bocauso of the fact that electrons wore observed to com out of nuolei in β-docoy processes. This argumont, howovor, oannot be takon vory seriously bocauso the samo roasoning would load to tho conolusion that oxoftod atoms contain light quanta. In tho montimo, it has
boon obsorvod that in some artificlal β-dooay proossos positrons aro omttod, Thus one trould have to believe by the same argument that nuolel contain positrons in addition to olectrons.

A rather strong argument has been given which shovs that neither eleotrons nor positrons oan exist in nuolei. If a partiole is onfined to a rogion with Iinear dimensions Δq then the momentum has an unoertainty $\hbar / \Delta q$, that is, the momentum may have any value from zero up to about this lattor value. Mow in the nueleus Δq is a few times 10^{-13} om . From the corresponding momentum unoerteinty one may delculate the spread in kinetio energy by the formula

$$
\frac{p^{2}}{2 m}
$$

where p is the momentum, and m is the mass of the partiole in question. If the particle is a proton or a neutron, then the uncertainty in kinetio onergy is of the order of the nuclear binding onorgies. If, hovever the panticle would be an electron, the unoertainty in kinetio energy vould be much biger due to the small velue of the mass of the electron. Aotually, in this case the above formula would not even bo applicable because the electron would move acoording to relativistio laws, but even calculating the energy by the rolativistic formula $\mathrm{E}_{\text {kin }}=o p$, it would bo much higher than nuclear binding onergies and the eleotron oould not be held in the nucleus.
IA-24 (16)

November 11, 1943

LEGTURR SERTES ON MUCLEAR FHYSICS

Second Sorlos: Fadioactivity \quad Iocturer: En Sogre

LECTURE XVI: SURVEY OF STABIE NUCIEI

We shall norv gite a survey of the properties of the stable nucled. The folmoring table olessifles the stable nuolei according to whe ther they oon tain an even on odd number of neutrons or protons.

2	even	ocd
oven	152	62
odd	55	4

The table shows that nuclei with an odd number of protons or an odd number of neutrons are relatively few in number. Nuolel containing both an odd number of neutrons and an odd number of protons are partioularly fev. There are only four such nuelef, all of them quite light. They are $H^{2}, \mathrm{Li}^{6}, \mathrm{~B}^{10,} \mathrm{~N}^{14}$. It is seon that these nuclei form a simple series. It may be remarked that not only are there fower kinds of nuclei with oither an odd number of neutrons or an odd number of protons, but also that suoh nuclei aro less abundant.

In connection with the fact that nuclei with an odd number of neutrons or an odd number of protons are relatively rare it may bs mentioned that nuclea with an odd value of $Z, i . e$. with an odd number of prithen, nover have more than tro isotopes. With the exoeption of the lightest elenern, these isotopes differ by two neutrons. Similarly, if one considers nucloi with a given odd number of neutrons one will never find more than two stablo nuclej of this kind and they will diffor as a rule by two protons. On the other hand, nuelei vith oven Z may ocontain numerous isotopes.

Tuolei have boen also classiffed aocording to whether their mass number A hes the form $4 n+1,4 n+2$, or $4 n+3$. The class $A=4 n$ contains more nuclea than the others. The original reason for this classirication was that tho presence of α-partioles with mass 4 was suspected in the nuclei. In a oortain sense a-particlos can actually be considered as sub-units in a nuclous. Nucloi aro frequonty reprosented in diagrans as tho Following figure shows,

In this figure the abscisse Z is the number of protons and tho ordinato iv is the number of noutrons. stable nuoloi aro indieated by dots, radioactive nualei by crosses. Tho absoissa has beon also provided with tho appropriato atomic symbols.

If one dravs tho samo figuro on a smallor scale so that the whole periodte systoms rathor than its mero besinning may be roprosentod one finds that the stable nuclol in this rigure

would olustor around the thiok dotted 11 no shown in the figure. This 1 ino starts out at 45° corresponding to an equal number of noutrons and protons and thon bonds upward showing that hoavy nuoloi oontain as a rulo moro neutrons than prom tons. The straight lines shown in tho ftgure aro lines conneoting isobazic nucloi, that is, nuclo for which $A=1+2$ hes the some value. Such nucloi oan In prinolple transform into each othor by omission of oloctrons or positrons.

One might imagine the figure made more complete by adding the energy of the nucleus, that is, the onerey needed to pull apart all the oonstituent neutrons and protons. One may plot this onergy in the third dimension porpondic. ularly to the plane of Figure 2. The energy surface obtained in this maner will have a valley along the dotted line near which the stable nuclei oluster.

Cutting the onergy surface along an isobario line one obtains an onergy curvo as shown in Figure 3.

The straight lines shown in the figure are energies of the various isobaric nuolei. One of these energies will have the smallest value and a corresponding nucleus will be the only stable isobar. The corresponding stable nucleus is indicated by a dot while the unstable ones are shown as orossos. Arrows are also shown which indicate the diroction in which nuclear β-transformations take place. The situation depicted in Figure 3 holds only for nuelei with an odd mass number. Isobars of such nuolei must either oontain an even number of noutrons and an oda number of protons or olso an oven number of protons and an odd number of neutrons. There is no systomatic deviation botween the onorgies of the so two kinds of nuclei. If the mass number is ovon, then the nuclei may oithor contain an evon number of noutrons and an ovon number of protons, or olse, an odd number of noutrons and an odd number of protons. The formor kind of nucloi have systematically a lower onergy than tho lattor kind. Thus tho nuclear onergios will lie on two roughly parallol curtes, tho highor ono corrosponding to tho odd-odd oaso, the lowor on to the oven-ovon caso. This is shown in Figure 4.

Z odd IN odd
Z-ven Neven
$Z+N-1=$ oonstant

Fig. 4
It will be notioed that in this oase more then one stable nucleus may exist. In the figure, two such nuclei are shown. The one on the right hand side has a higher energy than the one to the left. But the nucleus with the higher energy could transform into the one of the lower energy only by simultaneous emission of two charges which is an exceedingly improbable process. Emission of one charge (electron or positron) would carry us to the upper ourve and would require energy rather than produce ite. It will also be noticed from the figure thet one nucleus on the higher curve may transform into a nuoleus of lower energy either by shifting to the right or the left. The oorresponding physical behavior is that such a aucleus emits positrons and electrons. This has actually been observed for several nuclei.

From the systematics of the nuclei, conclusions about nuclear forces may bo drown:

Equality of number of neutrons and protons.
This equality holds for the lighter nuolei. It is to be explained by assuming that the nuclear forcos acting on neutrons and protons are similar. The explanation also uses the Fauli princlple which asserts that in each state only one particle can exist that is, in a given orbit within the nucleus one may have not more than two neutrons (or not more than two protons) differing in the direction of their spins. From the equality of the forces acting on neutrons
and protons it follows that up to a given energy there will be a similar number of orbits avalible for neutrons and protons. In one then fills up the lowest orbits available up to a given energy, one will have to use a roughly equal number of neutrons and protons.

Greater number of neutrons in heavier nuolel.
This is to be explained vith the help of the Coulomb lav. It is asior to add a neutron than a proton to a nuoleus whioh is already heavily oharged. In lighter nuolei, the Coulomb forces are considerably smaller than the nuclear forces. In heavier nuclei the Coulomb energies of the several prom tons due to the longer range of these forces add up and becone eventually comparable to the nuclear energios. Mass defect and volume proportional to mass number.

The se facts indioato forces having a saturation character, that is, a situation in which one particle contributes effectively to the total energy by interacting with a limited number of other particles. The same situation is enoountered in crystals.

Bindingenergies of Deuteron and α-partiole
The fact that the a-partiole has a more than 10 times greater binding energy than the Deuteron shows that the saturation has not boen rached at the latter particle. In the aparticle the saturation is actually roached. This shows that a particle, for instance a noutron, can effectively interact in a nucleus with another neutron and two othor protons. The usual interpretation is that a particle oan intoract with all othor partioles which are pormittod by the Pauli principle to move in the same orbit and thet the interaction does not depend very strongly on tho different spin directions which the partieles may possess in this orbit.

The a Disintegration.
The Q-particles omitted by a nuclous thave a well defirled onergy and
range. A very small fraction of the a-partiolo has somotímes a considerably longor range. The main fact of the uniform onergy of the α 's may bo oxplained by assuming that the Cparticle has boen emitted by a nuclous of a givon onorgy and that another nuclous of a given onergy is left bohind after tho α-docay. The energy difference is then earried away by the \boldsymbol{a}-partiolo,

Another jmportant law of the α-radioactivity is the connoction botweon the range of the particlos and the docay oonstant. This is the Geiger-Nuttel rolation. It states that the logarithm of the docay constant is a linoar funcm tion of tho rango. Actually one finds that the relation botwoen tho logarithm of the docay constant and the range is slightly difforont for tho radium, aotinium, and thorium familios. Tho throo straight lines roprosenting the relations for those thro familios aro howevor parallol and thoir distancos from oach othor aro small. If ono had plottod tho logarithm of tho docay oonstant as a funotion of the onorgy rathor than as a function of tho rango, tho plot would again bo in good approximation a straight lino.

Tho explanation of tho Gojgormuttal rolation is closoly connoctod with the shape of the potential energy acting betweon the a-particle and the fraction of the nucleus which the ce-particle has just left. At radii bigger than the nuclear radius r_{0} chown in the figure, the interaction is a Coulomb repulsion as shown in the some figure. At distances closer than r_{0} some kind of an attraction must exist, otherwise there would be no rea on why the original nucleus that has emitted the α-particle had stayed together any length of time. In the potential valley at distances smaller than r_{0} the α-particle had in the original nucleus an eneryy level at the energy value E.

After the α-particle has moved out to sufficiently great r values so that all interactions including the Coulomb interaction have become negligible, the a-partiole will possess that onergy E in the form of kinetic energy.

If now the product nucleus is bombarded by a-partioles of energy E, pure Rutherford scattering is observed, indicating that at the radius router to which the α-particle con penetrate according to classical meohanios, the unmodified Coulomb force still holds. There arises the question: in what way can the a-particle oross the potential barrier between rinner and router (see figure 5).

This question has been answered by Gurney and Condon, and by Gamow. In quantum mechanios leakage through a potential barrier is possible, though the probability of such a process becomes small when the barrier becomes high or broed. The time of decay may be estimated by imagining the a-particle oscillating within the potential hole, by oalculating the number of times the α-particle bumps into the barrier per second, and finally, by multiplying with the probability that the a-particle penetrates the barrier in one collision.

The fact that the a-partiole can penetrate through the barrier is connected with the α-particle!s wave nature. An illustration from optios may be given. If light impinges on the interface between glass and air from the side of the glass under a sufficiently glancing angle, total reflection takes place,
that is, all the light is refleoted back Into the glass and none penotratos into the air. Phyetcal optzos shows that aotually e part of the wate fleld a 000 m panying the 1 ght reaches out into the air. But $1 t$ dies down exponentially, and at any appreoiable distance itis not notioeable. Also it oarrios no energy stroam. If now another glass plate is brought to within a fow wave longths of Iight from the first glass plate this seoond glass plate will be reached by the exponantially decaying field in air and part of the light will bo transmittod to the second iece of giass.

The potontial barrier, whioh coparticles odnot onter in olasstoal mechanios, but whioh they con penetrate to a cortain extent in wave mochanios, is analogous to the layer of air betwoen the two glass platos. In both oases the amount of wave (light wave or α-partiolo wavo) that can ponotrato tends oxponontalay toward zoro as the gap of tho barrier bocomes broador.

Ono might foel that it is obsurd to expect an α-partiolo botwoon Finner and router whero the potential onergy is groator than the totel onorgy of the \boldsymbol{a}-particle and that, on the other hand, the α-partiole oould not ponetrato the barrior if it nover wore found botwoon r inhor and routor: The answor is that if the appropritito oxporimont wore madel tho a partiolo would bo found somotimos on top of tho barrier. But the onorey noodoc for that would bo givon to the α-partilolo by the oxperimontal procoduro itsolf.

$$
L A-24(17)
$$

Novembor 16,1943
LECTURE SERTES ON NUCLEAR PHYSICS
Socond Seriesi Radioaotivity : Lootureri E. Sogro
LWCHURE XVII: THEORY OE α-DISINTEGRATION. THEORY OF BETA PARTTCLES

Wo havo soon in tho last locturo that olassioal physios oould not explain tho paradox of α-disintegration tho onorgy of $\alpha-$ partiolos from
natural omittors is not sufficiontly high to pormt tho oc pantholo to pass ovor the potential barrier surrounding the nucleusi hence the escoping partiole rust have pessod through a regtion ($x_{0}<r<r 1$ of FLg , 1.) oorresponding to negative kinetio energy This phemomenon of barrier penetration has been oxplained by

Fig. 1 Shematio potential of a nucleus.
quantum meohanios. It can shown that there is a small but finfte probebility for a particle to transverse the "forbidden" region given by

$$
\begin{equation*}
P=l^{-\frac{2}{h}} \int_{r_{1}}^{r_{0}} \sqrt{2 m|B+|} d r \tag{1}
\end{equation*}
$$

where E is the energy of the emitted α-partiole U Ls the potential energy as shown sohematioally in Fig. l; the integration is over the barrier with at the onergy and h is Planoke oonstant. One oan soe qualitatively that the probabllity 1 s smaller the greeter the barrier holght and the larger tho barrier width, $r_{1}-r_{0}$

One may now obtain an exprossion for the djaintegration constant based on the unoertainty principle. If r_{0} is the nuolour radius, and the veloolty of the a-partiole, then appoximately

$$
\frac{h}{m} \approx r_{0}
$$

$$
\begin{aligned}
& \text { whoh mey be written } \\
& \qquad v \approx \frac{h}{M_{C}^{r_{0}}}
\end{aligned}
$$

The frequenoy with which the α-partiole strikes the "potential wall" is then

$$
\frac{v}{2 r_{0}} \approx \frac{h}{\frac{h}{r_{0}}}
$$

Hence

$$
\begin{equation*}
\frac{h}{2 a^{2} r_{0}^{2}} \operatorname{l}^{-2} \int_{r_{0}}^{r_{1}} \sqrt{2 m a|E-U|} d r \tag{2}
\end{equation*}
$$

One can use the above formula to dotermine ry from the given total onergy of the $\mathscr{\alpha}$-partiole and the decay constant; a value

$$
r_{1} \sim I_{45} \times 10^{-13} A^{1 / 3}
$$

is found, where A is the mass number of the nucleus. This value of r_{1} is in agreoment with that found from soattering exporimonts using the Rutherford formula.

An important application of Eq. (1) is in comootion with artifioial disintegration by ohargod partioles, insmuch as thoy must ponetrate the potential barrior of the nuclous to initiato a nuoloar roaction. Anomalous a-treoles

On a Wilson cloud ohamber photograph of an alpha souroe of some of the C produets, one wll1 oocasionally observe a trock considerably Longor than the rost. This ocourrance may be oxplained by a consideration of the somalled nuclear energy lovals.

suppose inftally all alphas aro in the highost lovel, 3 of Fige 2. A transition to tho ground level may occur with the omisslon of a very enorgotio alpho. How over, transitions to lovels 2 and 1 may oocur with omission of sucossive gamma rays and sinally a transition to the ground stato with the amission of a loss onergotio olpho. Stnce the γ-transitions ore moro probablo, it is oxpooted that the olphas will bo of tho loss onongate typo, and tho more onergotio (longer range) alphas will bo muoh loss frequont. Thoory of bota decoy:

The most oharactoristic offoct of β-docay is that the β-particles from a dis intograting nuclous havo a conthnous distribution In onorgy up to a wolt defined onorgy valuo. Exporimentaly a cloud ohamor with a manotio flold rotoals tracks of varying ourvaturo corrosponding to various onorgios of the β-partiolosi A typioal spoctrum 1 s shown

In Fige 3 . This continuous distribution $1 n$ onerg is vory surprising inasmuch as both the initial and final onorg stato aro woll dofined. For instanoe,
nuclei are known which emit in turn, an alpha, a beta, and then another alpha. The two alphas have quite definite energies, yet the beta particle does not. Some years ago, attempts were made to measure the energy of the betas by using a very thick Pb walled oalorimeter. It was hoped at the time that all the energy of the emitted particles would be measured. However, an amount, corresponding only to the aree under the distribution ourve, wes found.

Bohr made the suggestion that perhaps energy and momenturn was not conserved in β-disintegration. A special hypothosis made by Pauli was that a second particle - the neutrine - was emitted, so that conservation laws were still valia.

Attempts have been made to correlate the maximum energy \mathbb{E} in a beta speotrum with the disintegration constant $\boldsymbol{\lambda}$, as was done in the case of a-partioles (Geiger-Nutall laws). The sargent ourves, a plot of $\log \lambda$ vs E, are an attempt in this direction.

From absorption measurements in aluminum and using a standardized method of extrapolating the range enorgy ourve, ono obtains

$$
R=0.543 E-0.16
$$

where E is in million electron volts and R in cm. (Feather rolation).
A satisfactary theory of betamisintegration must explain the oontinuous spectrum and give a correot rangewnorgy relation. Formi has devolopod a thoory with the neutrino hypothesis. In the nucleus a noutron is converted to a proton together with the emission of an olootron. The role of tho oleatron is similar to that of a photon in radiation thoory. Tho probability of omission of an elootron with onergy in the interval $E, E+\Delta E$ for 1 ght nuclei is givon by

$$
P(E) d E=G^{2} \frac{m_{\rho}^{5} c^{4}}{2 \pi^{3} k 7}\left|\int_{0} u_{n}^{x} v_{m} d \tau\right| 2(E D-E)^{2} \sqrt{E^{2}-1} E d E
$$

where E is in units of $m_{0} o^{2}$, C the volooity of light, E_{0} the maximum A.partiolo onorgy, 7 is planok's constant divided by 2t, g is a univorsal constant of the thoory. Attempts hovo boen made to coxrolate it with other known
oonstants (olgty mass of mosotron). u and v aro nuolear elgenfunotions; the intogral Is the oocalled matrix olothent and corrosponds to oxprossions in radiam tion thoory rolatod to tho trandition probobilitiog, for hoovy nuoloj, ono must take into acoount the largo coulomb interaotion of the botatparticio with tho nuclous. The shape of the distribution ourve at the high anorgy end depends on the mass of the neutrine. Experimental evidence indicates a relatively very small moss for 1t. Several features of the detalled theory on be oheoked on the β-decay of nuclei oontaining 2 protons and $2 \cdots 1$ neutrons suoh as cil and N^{13}, λ caloulated from the theory agrees quite well with experiment. (Whito, Phys. Rev., 59, 63 (1941).

The neutron is expected to be β-active with a mean $11 f e$ of several hours. Experimental evidenoe is lacking beouse the neutron reacts relatively quiokly with any nucleus that may be present. However, experiments have been proposed to measure this disintegration oonstant.

$$
\operatorname{LA}-24 \text { (18) }
$$

Novamber 18, 1943
LBCTURE SERTES ON NUCLEAR PHYSICS
Seoond Series: Radionotivity.
Lecturor: E. Segro
LECTURE XVIII: 1) POSITRON EMISSION AND K CAPTURE
2) GAMMA RADTATION

1) Positron Emission ana K Capture

Nuolei are known which omit positrons, giving rise to isobars with one loss nuoloar oharge than the parent nuclei. This rocotion oocurs if the nvallable onorgy is at least 500 kv the onergy equivalent of tho positron, that is, if the mass of the parent nueleus excoods that of the doughter by at least the mass of the positron. If the energy avalloble is less, then the nucleus will oapture an electron from the innermost shell and subsequently omit an X-ray
quantum. This so-oalled K (electron)-oapture by the nucleus also ocours at the Kigher energies but is less possible.

2) Gamma Radiation

The electromagnetio radiations emitted by radioaotive substances are called $\boldsymbol{\gamma}$-rays. The \mathcal{Y}-rays are oharacterized by their frequenoy, or as is more usual by the energy of a quantum expressed in eleotron volts or in units of $m_{e} c^{2}$. The range in onergy of $\boldsymbol{\eta}$-rays from naturally radioactive substancos is approximately 50,000 ev to about 3 Mev (million electron volts). By bombarding Li with protons more energetic 7 mays are obtained, values up to 17 Mev have been found. The highest onergies in the lab have boen reached with the Kerst betatron.

The theory of γ-ray emission is similar to that of the emission of light from atoms and molecules, except that the magnitudes of some of the quantities involved are much different. The probability of a transition from one energy state say m, to another lower energy state n, and the emission of a light quantum is given by

$$
\begin{equation*}
\mathrm{W}=\frac{\omega^{3}}{3 \mathrm{c}^{3}} \mathrm{P}^{2} \tag{1}
\end{equation*}
$$

where ω is 2π times the frequenoy of the emitted radiation, C the velooity of light. P is the somalled matrix oloment of tho transition and is the olectrio moment avoraged over the oigenfunctions of the two statos m and n Equation (1) ropresonts the first torm of an expansion in powors of r_{0} / λ whoro r_{0} is the nuclear radius and λ the wavolength of the omitted quantum. Physically, the first term in the expansion corresponds to the dipole radiation, the socond to the quadrupolo radiation, oto. In atomic procossos, λ is so largo comparod to tho radius of the atom, so that the socond torm is vory much smallor than tho first. For nucloar processes, however, λ and r_{0} do not differ as groatly; oonsequently the second term makes an appreciable contribution. The magnitudos of the matrix elomonts vary over a considerably wide range corrosponding to wide
variations in tho intensity of spoctral linos. It somotimos happons, for foasons of symmetry, that the matrix olement for dipole radiation is oxaotily zoro, that is, the dipolo transition is forbidden. In this cas0, tho transition probability Is govornod by tho second, or quadrupolo torm, For atomic procossos wo havo soon that quadrupole transitions of approoiable transitions aro para, but for nuclei, are quite frequent.

The dipole transitions ourrispond to ondnetes of one unt of angular momentum, and for quadrupole transitions to a ohathe of two unitis.

In some nudeat transttions the hueleus will interact with the elec\#rons surrounding the nucleus - with the result that an eleotron is ejected whose kinetio onergy is given by the differenoe of the excited nuolear energy level and the energy of exoltation of the partioular electron. If a K electron is ejeoted, then

$$
E_{k i n}=E_{\text {nucleus }}-E_{K}
$$

This process is known as internal conversion. Photographs on β-spectrograph show that the internal conversion electrons, as is to be expected, form very homogenoous groups in contradistinction to di sintegration electrons which have a continuous distribution in energy. Usually a group of lines of varying intensity is observed corresponding to ejection of electrons from different energy levels of the atom.

Occasionally γ-radiation is accompanied by β-disintegration and the question arises as to whether the radiation preoedes or follows the disintegration, If internally converted eleotrons are present and are analyzed to determine the energy differences between the various groups, an anstver can be given. For if the spacing corresponds to an X-ray diagram of the paront nuoleus, then the 7 -radiation precedes the disintegration, whereas if the spacing is that of the daughter nuclous, the converse is true.

The ratio of the number of onversion eleotrons to the number of
γ-quantion is known as the conversion coefficient.

If the transition probabiltty from the first exofted nuclear level to ground lovel is relatively very small so that the mean life of that lovel is apprecieby large, the exolted level is sejd to be metastable Let us conslder some experimental evidence. If the nuclel of $B r^{80}$ are in the ground atate, they underge 6 -disintegrathon whth a half-1ife of 18 m . If on tho other hand, the nuclei are in the first exolted level, whioh has half-life for γ emission

of 4^{h}, then the observed half-11fe of the subsequent β-emission ts found to be also 4 , since the rate determining factor is the slower rate of 7 emission. A further proof of suoh "isomerlo" nuclei is that they can bo produced by excitam tion by 7 -rays or elegtrons, first to a higher level, from which they reach the metastable level by 7 -emission of smaller energy.

Surpitisingly enough, rather simple ohemical techniques are known for separating the so-called nuclear isomers. About fiftyy suoh nuolei are known.

$$
14-24(19)
$$

November 30, 1943

> IFGTURE SERIES ON NUCLEAR FHYSICS

Third Seriest Neutron Physios
Leoturer: J. H. Williams
LECTURE XIX, DISCOVERY OF THE NEURRON
The first evidence of the existance of the neutron wes found by Bethe and Booker (Zoits f. Physik 66, 289 (1930), (Naturwiss 19, 753 (1931)). They published the results of some expertinents in which the light elements $11, \mathrm{Be}$,
and B were bombarded by polonium alpha particles. A very penetrating "radiation" was emitted which was more difficult to absorb by lead than the shortest wave length frrays then know, - those of ThC". Their original explanation was that the radjation was light of a very short wave length. Today we know that the Inoreased absorption of very short wavelength γ-rays by the process of pair oreation would eliminate this explanation. They were lead to the assumption that the "radiation" was photons on other grounds, besides that of absorption measuremonts, one being that no tracks were obsorved in a cloud chamber.

Carrying their hypothesis of hard γ 's to its logical conclusion on the basis of the Klein-Nishina absorption curve as a $f\left(E_{\gamma}\right)$, these early exporimenters gave energy for this "radiation" of from 7 to 15 Mov. Their absorption measurements were made with Geiger counter detectors. In a nuolear equation they postulatod that the reaction involved was

$$
4^{\mathrm{Be}}+2^{\mathrm{Ho}} \longrightarrow 6^{\mathrm{C}^{13}}+h v^{\prime}
$$

suppose for an exercise wo chook the onergy balanco of this equation by substituting masses in tho equation

$$
\begin{aligned}
& 4^{B \theta^{9}}=0.01504 \\
& 2^{H 0^{4}}=\frac{4.00389}{13.01893} \\
& c^{13}=\frac{13.00761}{.01132} \text { mass units } \\
& \text { One mass unit - } 931 \text { Mov } \\
& .01132 \text { I (" * } 10.5 \mathrm{Mov} \\
& \text { Enorgy available }{ }^{-}{ }^{-1} \alpha^{+10.5 ~ M o v . ~}
\end{aligned}
$$

The problom was next attached by Curio and Joliot (Comptos Rendus 194, 273. 708 (1932) . The important difforenco was that in the so resoarches, thin window ionization chambers instoad of Geigor oountors wore used as doteotors of the radiation. Thoy found that if matorial containing H were interposod
botwoen the α on $B e$ sourco and the ionization chamber, a large incroase in Ionization was observed. For absorbors of other kinds only small docreasos wore observod. They showod that this increase in ionization was due to the presenco of H reooils leaving the "absorbor" and entoring their ionization chamber. Cloud ohamber studies revealed the prosence of these proton recoils as well as He reooils in a Ho gas. By measuring the lengths of thoso rocoil traoks it was possible to determine the energy of the recoils. Some of the so rocoil protons had energies up to 5 Mov . No tracks wore obsorvod for the primary "radiation" which they assumed to be γ-rays. Curio and Joliot oxplainod those observations by saying that the onergy transfor ocourred in a Compton process. The \mathcal{F} wray energy calculated in this way turned out to bo 50 Mov . Unfortunately, the calm oulations for other recoil partiolos on the basis of this theory gave different γ-ray onergies. They were higher for heavier rocoil nuclei.

Chodwiok (Proc, Roy. Soc. A. 136, 692 (1932),) solvod this dilomma so convincingly that ho reooived tho Nobel prize. A schomatio diagram of the apparatus usod follows.
 The measured rocoil onorgies of H^{\prime} and N^{14} nucloi woro 5.7 Mev and 1.2 Mev respectively. on the basis of the photon hypothosis the caloulatod "radiation" onorgy would bo 55 Mev and 90 Mev respectively.

Thus the photon hypothesis was inconsistent with tho obsorvations. Either the laws of oonservation of onorgy and momentum or the hypothesis as to the natiure of the phenomenon was to be rejected. Chadwick therefore assumed that the "radiation" was a new particle of mass $\simeq m o s s$ of proton and having zero
oharge He ohristened it the neutron.
Consider heedwon collision between equal mass partioles. Then from the oonservation of energy we have

$$
\begin{equation*}
1 / 2 M V_{1}{ }^{2}=1 / 2 M V_{2}^{2}+1 / 2 M M_{r}^{2} \tag{1}
\end{equation*}
$$

and from the conservation of momentum we have

$$
\begin{equation*}
M V_{1}-N N_{2}+M V_{5} \tag{2}
\end{equation*}
$$

Solving $\quad V_{2} Z \nabla_{1}-V_{r}$
Substitute in (1)

$$
\begin{gathered}
V_{1}^{2}=V_{1}^{2}-2 V_{1} V_{r}+V_{r}^{2}+V_{r}{ }^{2} \\
0-V_{r} V_{r}-V_{r}{ }^{2} \\
V_{r}-V_{1} \\
V_{2}=0
\end{gathered}
$$

All the energy of the neutron is thenefore pessed on to the proton in a head-on collision. Thus, if the maximum roooil energy of the protong was 5.7 Mov the noutron onergy wes 5.7 Meve

If we consider the onse of the rotoiling \mathbb{N}^{14} nucleus by the seme oquetions as ebove with the oondtion that $M / 14$ we find

$$
\begin{aligned}
& V_{r}-\frac{2 M}{M_{r}+M} V_{t} \\
& \text { and } E_{r} 1 / 4 H_{M}
\end{aligned}
$$

This $1 s$ In fair egreement with Chadwiokts result and further mossuremonts sorvod to substantlate his hypothesis as to the oheracter of the neutrone

Zero oharge moans practically zero lonizing power one 1 on pair 3 meters path in air. Thus we explain the observation thet the neutron leaves no vis1ble traok In a oloud chamber.

The neutron loses energy prinolpally by interaotlon with nuolei and not appreclably to the olectrons of the matter through whoh it passes. These
mutual forces between nuolei are the subject of Mr. Critchfield's lectures. Artifioial Sources of Neutrons

Not a source of monoonergotic neutrons.
This mode of disintegration witha particles as the bombarding particle which results in noutron production hes beon obsorved for several light oloments, $\mathrm{Li}^{7}, \mathrm{~B}^{11}, \mathrm{~N}^{14}, \mathrm{~F}^{19}, \mathrm{Na}^{23}, \mathrm{Mg}^{24}, \mathrm{Al}^{27}$, but is most intense from Be , then B and $L \mathrm{I}^{\prime}$

These sources of neutrons are essentially vory weak, relative to sources of which we shall speak later. It was impossible up to 1942 to get sources in this manner using po as the C-sourco which give moro than $\sim 10^{5} \mathrm{r} / \mathrm{sec}$ or expressod in anothor wey the yield is $50 \mathrm{n} / 10^{6}$ a's stopped. On the othor hand, if tho als are obtainod from R_{a} which is intimately mixed with Be, the number of neutrons emitted per sec. per me. of Rn is of tho order of $10^{4} / \mathrm{sec}$. With a curio of Ra one therefore has an appreciably active sourco. Unfortunately γ-rays are present here where they are absent in tho Po α sourcos, exoept $\sim 1 h \nu / n$.

A complete disoussion of $\boldsymbol{\alpha}-n$ roactions, the energies of the neutrons and of the associatod 7 -rays is given in Livingston and Bethe, Rev. Mod. Phys: 9. pages 303 to $308,1937$.

Photoeloctrio Production of Ncutrons.
With two of the light elomonts H_{4}^{2} and Be_{4}^{9}, noutrons can be produoed by the γ mroys of ThC" or any Yrays whose energy exceeds the binding enorgy of the neutron in the primary nucleus, The probability of this process is low and as a consequence the yiold of these sourcos is oorrospondingly low. Examples $-H^{2}+h \nu \rightarrow H^{1}+\mathrm{n}^{1}+Q$ Chadwiok and Goldhaber, (Proo. Roy. Soc. 151, 479 (1935).) used the ThC" Y-rays of onergy 2.62 Mov ond measured the actual magnitude of tho ionization of the
protons formod in the above reaction in ordor to dotermine their onorgy.
Sinoe $E_{n}=E_{p}$ as consequence of their having approximately oqual masses; the onergy equation means
$E v-2 E_{p}=-Q \quad 2.62-45=2.17$ MOV
The analysis of the data gave $Q-2,2 \mathrm{Mev}$
This means the neutron is bound in the H^{2} nuoleus with an energy of 2.2 Mev

Knowledge of this binding energy is of great thooretical importance sinoo it allows us to determine the mass of tho noutron. Mass of Noutron

Rewriting the photo disintegration equation

$$
\begin{aligned}
& I^{2}+h v \rightarrow I^{I}+o^{n^{1}} \text { as a mass equation } \\
& 2.01473+\frac{266}{931}=1.00813+M_{n}+\frac{045}{931} \\
& M_{n}=1.00893 \pm: 00005
\end{aligned}
$$

A tablo in IIvingston and Botho, page 353, summarizes tho evidence on - -areactions up to 1937

A modern usoful souroo of noutrons using γ rrays on light elements illustratos tho advanoes in toohniquo mado in nuclear physics in rocent yoars.

As we will disouss later, it is possible to produce an isotope of Y by deuteron bombardment of sr which has a $1 / 2$ lifo of 80 days and emits a γ may of sufflcient onorgy to dissociato Bo^{9} and givo noutrons of 160 mkv onorgy. This souroe has boon extromely useful as a souroe of polatively monoonorgetio neutrons.

$$
\text { IA } 24 \text { (20) }
$$

December 2, 1943

LECIURE SERIES ON NUCLEAR PHYSICS

Third Series: Neutron Physics Lecturer: J. H. Williams

LECTURE XX I. Neutron Sourcos (continued) II. Typical Reactions for Production of Neutrons

Neutron Sources (Continued). Neutrons may be produced by the bombardment of certain nuclei with protons, deuterons or alpha particles, that is, a nuclear reaction takes place and a neutron is emitted. To initiate the reaction, the bombarding particle must penetrate the potential barrier surrounding the target nucleus. In other words, the projectiles must have a sufficiently high kinetic energy.

We may distinguish two methods used to accelerate such particles, namely direct and resonance accelerators. The first type is simply a long vacuum tube, one end of which is at a very high potential and contains a source of ions, and the other is usually at ground potential and contains the target. The ions traverse the vacuum tube aoquiring kinetic energy corresponding to the drop in potential.

The resonance accelerator, or cyclotron, consists of a large, flat, hollow cylinder separated into two sections, each resembling the letter D. An oscillating voltage difference is applied between the two "dees" of the order of a hundred kilovolts and at a frequency of several magacycles. Along the axis, a magnetic field of severel thousand gauss is applied. The ion
source is on the axis. Under the rroper conditions, the ions travel in circular orbits of increasing radil and increase their kinetic energy during each passage from one of the dees to the other. The success of the cyclotron is due to the fact that the angular frequency of the motion is independent of the energy (i.e., of the radius of curvature of the orbit). When the voltage frequency is equal to the angular frequency, resonance conditions obtain. It is possible by such resonance means to attain energies of the order of several million electron yolts.

Typical Reactions for Production of Neutrons (p,n) reaction:

In this type, the incoming particle is a proton and the emitted one a neutron. Written in detail:

$$
Z^{A}+H^{\prime} \rightarrow(Z+1)^{A}+n^{\prime}+Q
$$

where A is the mass number and Z the atomic number. Q is the energy of the reaction. It turns out that Q in this a ase is negative, that is, that energy must be supplied to the reaction. In the first place, the neutron differs in mass from the proton by an energy equivalence of 0.8 MEV , so at least that much kinetic energy of the proton would be necessary (assuming the ground levels of the two nuclei, $Z A,(Z+1) A$, are equal). If it is known that the $(Z+1)^{A}$ is a beta-emitter, then an additional milion electron volts (equivalent to two electronic masses) are required. For the case

$$
\mathrm{HI}^{7}+\mathrm{H}^{\prime} \rightarrow \mathrm{Be}^{7}+\mathrm{n}^{\prime}
$$

the threshold energy is 1.86 NEV. The energy of the emitted neutron in the forward direction in the center of gravity system of coordinates will be roughly the difference of bombarding energy
and 1.86 MEV. Thus this method is very convenient for producing mono-energetic neutrons simply by controlling the bombarding voltage. It is clear from consideration of momentum and enerey conservation thet for a given bombarding voltage, the energy of the emitted neutron depends on the direction of emission, so that neutrons observed in the backward direction of the beam will have less energy than those in the forward direction, so that one may obtain a range of neutron energies as a function of angle. Practically, there is an effective spread of bombarding energies because of the fact that some of the neutrons will be slowed down in the finite thickness of the target before they initiate a nuclear reaction. This variation can be made arbitrarily small but is usually of the order of 5 to 50 kv for intensity reasons.
(d,n) reaction: Here the type is

$$
z^{A}+H^{2} \longrightarrow(z+1)^{A+1}+n^{1}+Q
$$

The so-called (d, d) reaction is an example:

$$
\mathrm{H}^{2}+\mathrm{H}^{2} \longrightarrow \mathrm{He}^{3}+\mathrm{n}^{\prime}+3.2 \mathrm{MEV}
$$

This reaction provides a copious source of neutrons. Yields of the order of 10^{8} neutrons/sec are possible with bombarding currents of the order of $10 \mu \mathrm{~A}$ impinging on heavy ice targets. The efficiencies are of the order of $\ln / 105$ deuterons. A desirable feature is that the reaction has an appreciable cross-section at low bombarding energies. One difficulty is the preparation of thin targets. Often gas targets are used but the yields are correspondingly smaller. Another example is

$$
\mathrm{C}_{6}^{12}+\mathrm{H}_{1}^{2} \rightarrow \mathrm{~N}^{13}+\mathrm{n}^{1}+Q
$$

with $Q=-.25 \mathrm{MEV}$, which means that the reaction is endoergic. The energy spectrum of the emitted neutrons is not simple because of the $c^{13}(d, n) N^{14}$ reaction.

Disintegrations produced by neutrons (n, a) reactions:

An example of this type is

$$
\mathrm{n}^{\prime}+\mathrm{N}^{14} \longrightarrow \mathrm{He}^{4}+\mathrm{B}^{11}
$$

One can obtain cloud chamber photographs of this process to establish its identity beyond question, but it is a somewhat tedious procedure since many photographs must be taken before one finds evidence for the reaction. Another well known reaction is

$$
\mathrm{n}^{\prime}+\mathrm{B}^{10} \longrightarrow \mathrm{He}^{4}+\mathrm{Hi}^{7}
$$

and also

$$
n^{1}+L i^{6} \longrightarrow H^{3}+\mathrm{He}^{4}
$$

Both of these reactions have relatively very large cross-sections for thermal neutrons and are very useful for the detection of neutrons by detecting the ionization produced by the emitted c-particles. A common procedure is to line the walls of the ionization chamber with a layer of boron. Often proportional counters are used which contain gasious boron trifluoride and the individual particle pulses are detected.
(n, p) reaction: Symbolically this reaction is

$$
z^{A}+n^{\prime} \rightarrow(Z-I)^{A}+H^{I}
$$

This reaction is usually endoergic, the case $z^{A}=N^{14}$ being an exception.
(n, Y) reaction: This type is the simple capture process in which a neutron is absorbed and a gamma quantum
omitted. Process was first observed by Fermi in the production of artificially radioactive isotopes by slow neutron irradiation. (n, 2n) reaction:

$$
z^{A}+n^{\prime} \rightarrow z^{A}-1+2 n
$$

It is clear that this reaction requires at least an amount of energy corresponding to the binding energy of a neutron in the nucleus. Hence fast neutrons are required to make reaction go. This process can only be reliably identified if the resulting nucleus is radioactive.

$$
I A-24 \text { (21) }
$$

December 7, 1943

LECTURE SERIES ON NUCLEAR PHYSICS

Third Series: Neutron Physics
Lecturer: J. H. Williams

Lecture XXI Properties of Slow Neutrons

Slow neutrons are produced by allowing fast neutrons to pass through peraffin. The collisions of the neutrons with the protons in paraffin result in the inftial energy of the neutron being divided up between the neutron and the proton. Thus in successive collisions the neutron loses energy until it finally winds up with thermal energies.

The process of slowing down of the neutrons depends on the collision cross-section between neutrons and protons. We shall discuss the concept of a collision cross-section, as it has been introduced in the kinetic thoory of gases.

Let us assume that two gas atoms collide if they come closer to each other than the distance s. Assume further that the relative velocity of the two particles is V. Then, the particle under consideration will sweep out per unit time a volume $\pi s^{2} v$ and the particle will collide with all collision particles within this volume, Therefore the number of collisions per second is $\pi s^{2} \mathrm{Vn}$ where n is the number of coliision partners per unit volume. Assuming that all of the relative velocity V is due to the motion of the incident particle, the distance through which this particle travels between collisions, that is the mean free path, is given by
$\ell=1 / \pi s^{2} n$. (in the kinetic energy of gases the incident particle and its collision partners move with the same average velocity which introduces into the formula of the mean free path a factor $1 / \sqrt{2 .)}$

The probability that a particle should move through a distance x without making a collision is given by $e^{-x / \ell}=$ $e^{-x \pi s^{2} n}=e^{-x o n}$, Here the collision cross-section $0=\pi s^{2}$ has been introduced. This cross-section is in gas kinetic theory the geometric area within which collisions take place. Experimentally, the above exponential formula may be used to measure the crosssection. For this purpose a slab of the material made out of the collision particles and having thickness x is placed into a beam of incident neutrons with intensity I_{0}. A smaller intensity I will emerge from the slab since the neutrons which made the collision are missing from the beam. Then the ratio of the two intensities is given by the formula $1 / I_{0}=e^{-n o x}$

Nuclear cross-sections have usually the order of magnitude $10^{-24} \mathrm{~cm}^{2}$. This quantity has been introduced as a unit of nuclear cross-sections. It is called the barn.

The collision cross-section and mean free path of neutrons in paraffin vary a great deal with the energy of the neutrons. The cross-section is a few barns above a Mv whereas it is fifty barns for thermal energies. At the high energies the mean free path is a few $\mathrm{cm}_{\text {; }}$ while thermal neutrons have a mean free path of a few mm.

The energy loss of a neutrion in a collision with a proton depends on the angle of deflection. If the initial energy of the neutrons is E_{0} then the average energy of the neutrons after n collisions is E_{0} / e^{n}. Thus apnroximately 20 collisions are necessary to reduce fast neutrons to thermal energy.

The number of slow neutrons that can be obtained in a given volume of paraffin depends on the rate of production of slow neutrons and on the rate of absorption of slow neutrons by the hydrogen in the paraffin. This absorption is due to the process $H^{\prime}+n^{\prime} \longrightarrow H^{2}+h \nu_{0}$ This reaction is only one example of the very common process in which a slow neutron is absorbed by a nucleus and a y-ray is emitted. The resulting nucleus is frequently radioactive. (This is not the case when neutrons are absorbed by H'.) The production of radioactive nuclei provides us with an easy means of measuring the capture cross-section, i.e., the part of the collision cross-section which is due to the capture process.

To perform the measurement we use a thin sheet containing n absorbing atoms per cm^{2}. We let N nuclel impinge upon the sheet per cm^{2} and second. Then the number of radio-active nuclei formed per cm^{2} and second is given by nNo. Thus the capture crossmsection may be measured by determining the radio-activity formed.

Some nuclei have very high thermal capture cross-sections. For instance, the capture cross-section of cadmium is 3,000 barns. While this cross-section is very much greater than the geometric cross-section of the nucleus, the scattering cross-section at corresponding energies is only a few barns, that is, comparable to the geometric cross-section.

A further peculiarity of the capture cross-sections at low energles was found by Moon and Tillman (Proc. Roy. Soc. A 153467 (1936)). They observed that the capture cross-section changes rapidly with the neutron energy showing maxima as can be seen in the following figure.

The maxima are separated by distances of the order of 10 electron volts on the energy scale.

The crude explanation of this phenomenon is resonance. The word resonance suggests the analogy with the great energy transfers which become possible between vibrating systems if the frequencies are equal to each other. If the rest energy of the initial nucleus, plus the rest energy of the neutron, plus the kinetic enercy carried in by the neutron, happens to agree with the energy of a compound nucleus made up from the initial nucleus and the neutron, then the reaction becomes more probable. For instance, the above reaction of neutron capture by hydrogen may be written in the form $H^{\prime}+n^{\prime} \rightarrow H^{2} \rightarrow H^{2}+h v$ where the compound nucleus $H^{2} *$ is an excited state of the nucleus H^{2}. Not only capture but also scattering may be described with the help of compound nuclei. For Instance, the scattering of neutrons by protons may be written in the following form $H^{\prime}+n^{\prime} \longrightarrow H^{2} * \rightarrow H^{\prime}+n^{\prime}$. The various means by which the compound nucleus may disappear, that is, emission of a quantum or emission of a neutron, or possibly emission of another particle, compete with each other. At low neutron energies emission of a V-quantum and consequent neutron capture predominates for most nuclei.

The first theory of resonance canture of neutrons was given by Breit and Wigner (Phys. Rev. 49519 (1936)): Rather than discuss the complete theory we shall describe the behavior of the neutrons
A) if their energy is very close to a resonance
B) if their energy is very low.

In this way, we shall understand the general appearance of the curve for σ_{c} which has been given above, that is, the general rise
of σ_{C} with decreasing energy (B) and the superposed resonances (A). If condition (A) is fulfilled, the collision cross-section is determined by the single neighboring resonance with energy E_{r}. Then, according to Breit and Wigner a neutron with energy E. possesses a col11sion cross-section

Here X is the de Broglie wave length divided by 2π of the neutron of energy E and. X_{r} is the same quantity for the case that the neutron possesses the resonance energy E_{r}. T is the width of the resonance and Γ_{n} is that part of the width which is due to the neutron emission. A detailed explanation of these quantities will be given in a later lecture.

If $E-E_{r}$ is great compared to Γ, the colidsion crosssection will fall off inversely as the square of $E \mathrm{~F}_{\mathrm{r}}$ ar both sides of the resonance. In exact resonance only the T^{2} torm remains in the denominator and at this point (or rather close to this point) the cross-section attains its maximum.

If on the other hand, the enevgy of the neutron is small compared to all resonance energies (assumpion B), then the energy dependence of the cross-section is determined by the variation of χ with energy. In this region, the cross-section varies as 1 over the velocity of the neutron. The size of this region depends on the spacing of the resonance levels. When the first resonance level is reached the $1 / v$ law breaks down.

LECTURE SERIES ON NUCLEAR PHYSICS

Third Series: Neutron Physics Lecturer: J.H. Williams LECTURE XXII: PROPERTESSOF SLOW NEUTRONS (contInued)

If the width of the lowest level Γ, is greater than the energy E_{r} of the lowest level, then the $1 / v$ law will break down when the neutron energy becomes comparable to the width Γ.

The above statements concerning the region of validity of the $1 / \mathrm{v}$ law can be proved from the energy dependence of the capture cross-section as given by the Breit-Wigner formula (see end of last lecture). This energy dependence has the form

$$
\sigma_{0} \sim E^{-1 / 2} /\left\{\left(E-E_{r}\right)^{2}+\Gamma^{2}\right\}
$$

One sees that σ_{0} will behave as $1 / v$ if the condition

$$
d / d E \log E^{-1 / 2} \gg d / d E\left\{\left(E-E_{r}\right)^{2}+\Gamma^{2}\right\}
$$

is satisfied. This in turn is proved if either

$$
E \lll E_{r}
$$

or

$$
E \ll \Gamma
$$

One very important substance in slow neutron physics is cadmium. Its absorption cross-section as a function of energy is roughly represented by Fig. 1.

Its strong absorption for thermal neutrons is due to a resonance lying very close to thermal energies. A few tenths of a millimeter of $\dot{C} d$ shielding is sufficient to remove from a distribution of neutrons the thermal neutrons.

The first experiments, by which information on the cd absorption and on the distribution of thermal neutrons was obtained, were performed at Columbia. The experimental arrangement is shown in Fig. 2.

BF_{3}

On the left side of this figure a paraffin "howitzer" is shown, which is a block of paraffin shaped as shown in the figure and containing a radium-beryllium source at the indicated position. The paraffin block emits slow neutrons from all of its surfaces but the arrows indicate a particularly strong and somewhat better directed beam of slow neutrons produced by the peculiar shape of the howitzer. This neutron beam impinges upon a velocity selector which is shown In the figure to the right of the howitzer. This velocity selector consists of two rotating discs mounted on an axis at a distance D from each other and two stationary discs located before the first and behind the second rotating disc. On each of the four discs, $C d$ segments are mounted in such a way that there are on every disc 50 $C d$ segments and 50 segments free of $C d$. This arrangement is shown schematically below the velocity selector in the figure. To the far right of the figure a boron trifluoride counter is shown which detects the slow neutrons that have passed through the velocity selector.

The velocity selector is rotated with a velocity of n revolutions per second. The Cd strips of the rotating and the adjacent stationary discs will at a given time overlap, so that the neptrons can get through the Cd-free parts of the disc. Shortly thereafter, the $C d$ segments on the rotating, and stationary discs w111 alternate so that no neutrons can get through. If the velocity of the neutrons is such that they will find either the first or the second pair of rotating and stationary discs closed, then a minimum of transmitted neutron intensity will be observed. Assuming that all neutrons have the same velocity v, this minimum should occur
when the relation

$$
\rightarrow \quad v=100 \mathrm{n} / \mathrm{D}
$$

is satisfied. It has been found that the neutrons emitted by the howitzer have an approximate velocity of 2,500 meters per second. This corresponds to thermal velocities, A somewhat more detailed analysis showed that the neutron velocities have approximately a Maxwellian distribution shown in the figure.

In this figure, the number of neutrons having a given energy E is plotted against that energy. The maximum of that curve shifts to higher energies when the temperature is raised.

An investigation of the resonances occurring at a few iV was first carried out by a somewhat indirect method. This method takes advantage of the fact that the reaction

$$
\mathrm{n}^{1}+\mathrm{B}^{10} \longrightarrow \mathrm{He}_{2}^{4}+\mathrm{Be}_{4}^{7}
$$

has a cross section obeying the $1 / v$ law up to quite high energies. The experimental arrangement is shown in Fig. 4 .

B absorber

On the left hand side is indicated a neutron source (this might be a howitzer or another arrangement). The neutrons emitted by this source pass through a boron absorber of thickness x. Experiments are carried out with various thicknesses x. On the right hand side of the figure is seen a detector foil which is made of a substance that becomes radioactive under neutron bombardment. It is in this substance that we want to study the neutron capture resonances. The detector foil is enclosed in a Cd box. Four kinds of measurement are made:

1. no boron absorber present, no cadmium present.
2. no boron absorber present, cadmium present.
3. boron absorber present, no cadmium present.
4. boron absorber present, cadmium present. Comparing measurements 1 and 3 , one finds what fraction of the thermal and higher energy neutrons have been absorbed by the boron.

Comparing measurements 2 and 4, one finds what fraction of the higher energy neutrons have been absorbed by the boron (the thermai neutrons are stopped by the Gd box).

Comparing the difference of 1 and 2 with the difference of 3 and 4, one finds whet fraction of the thermal neutrons have been
absorbed by the boron.
We plot in Fig. 5 the quantity $\log A_{x}$, that is, the logarithm of the intensity observed in the detector foil as a function of the thickness of the boron absorber. The lower one of the two stralght lines in the figure

is obtained by taking the ratio of measurements 4 and 2. This curve, therefore, refers to high energy neutrons. The higher line is obtained by dividing ($3-r$) by ($1-2$). This curve refers therefore to thermal neutrons. The Intensity variations with boron absorber thickness may be represented by formulae of the type

$$
A_{x}=A_{0} O^{-K x}=0^{-n O_{0} x}
$$

The slope of the curves gives the absorption coofficient K. The absorption coefficient jn boron is proportional to the $-1 / 2$ power of the encrgy of the zeutrons. Therefore, one obtains for the ratio of resonance energy to thermal energy the expression

$$
\mathrm{E}_{\mathrm{t}} \mathrm{~K}_{\mathrm{m}}-\mathrm{K}_{\mathrm{r}}^{2} / \mathrm{K}_{\mathrm{th}}^{2}
$$

where $K_{t h}$ and K_{r} are the absorption coeflicients obtained for thermal energy and for tesciance onergy. Substituting $k T$ for $E_{t h}$, one can calculate the resonance energy.

One Iimitation of the method just described is that it assumes that neutrons are removed from the neutron beam only by absorption in boron and not by scattering in boron. This is a valid assumption for small neutron energies where the capture crosssection in boron is large. For energies above a kov, scattering by boron disturbs the measurement.

In this manner, the resonance captures for various elements have been explored. For medium and heavy elements it was found that resonances spaced Irregularly at a distance of the order of 10 volts from each other are present and that these resonances have widths of the order of 1 volt. In light elements no such resonances are found. These elements should show much more broad resonances which are much more widely spaced, if in fact they do not overlap.

It is more dirficult to study the resonances of an 1 sotope which does not become radioactive when it oaptures a neutron but transforms into another stable isotope. A rather inadequate method which has been applied in such cases 1 s based on the comperison of absorption coefficients of this isotope and of boron.

The velocity selector method of studying slow neutrons may be greatiy improved by using an electrical selector rather than a mechanical one. This method is known as the method of modulated neutrons. The experimental arrangement is shown in Fig. 6.

The neutrons originating from the source fall on a noutron absorber and then after having flown a total distance D are detected in a noutron counter, for instance in BF_{3} chamber. The source is not emitting neutrons all the time but only during short intervals of time, let us say of 10 microseconds duration, separated by longer time intervalsg of for instance 100 microseconds. The neutron pulses emitted by the source are shown in the uppor half of Fig. 7 .

The lower half of this figure shows the time intorvals during which the neutron detector is sensitive. It is seen that the detoctor will not react to neutrons unless they arrive t after they have been emitted. Thus only neutrons with a velocity

$$
\mathrm{v}=\mathrm{D} / \Delta \mathrm{t}
$$

are observed. By varying the thickness of the absorber, one can find the absorption coefficient for those particular neutrons in the meterial of the absorber. By varying the time delay Δt one can investigate the dependence of σ_{0} upon neutron energy.

One difficulty that arises in this method is that the noutrons may not be counted in the sensitive time of the detector immediately following the emission pulse of the source but in the sensitive time of the datector which comes 1 period later. This is called recycling. This difficulty can be minimized by choosing a long repeat poriod for the emission pulses and the corresponding sensitive intervals.

By the method described ebove it was possible to explore the properties of slow heutrons up to about 500 ct .

We shall no summarize briefly the interaction of neutrons with some elements. This will be done in connection with a table which in part has been taken from H. A. Bethe, Rev. Mod. Phys. 2, 151 (1937).

LECTURE SERIES ON NUCLEAR PHYSICS

Third Series: Neutron Physics Lecturer: J.H. Williams

LECTURE XXIII: FAST NEUTRONS

Generally speaking, neutrons are produced as fast neutrons. There are three principal reactions in which fast neutrons are produced. In the first one an alpha particle enters the nucleus and a neutron is emitted. The reaction is symbolized by (a, n). This reaction has mostly historical interest since it was the first reaction in which the production of neutrons was observed.

A second type of reaction in which neutrons are produced is the reaction in which a deuteron impinges on the nucleus and a neutron is emitted. The symbol for this reaction is (d, n). Two reactions of this type have become of great practical importance. One is the $B e(d, n)$ reaction in which the $B e$ is the bombarded nucleus and which gives a very copious source of neutrons. Another is the $D(d, n)$ in which the deuteron hits a stationary deuteron in the target. In this reaction monoenergetio nevtrons can be produced. The energy of the neutrons depends on the energy of the impinging deuteron. Neutrons between 2 Mev nd 7 Mev may be prom duced in this manner if the incident deuterems have an energy of 3.5 Mev .

The third important source of neutrons is the (p, n) reactions and in particular the $L 1(p, n)$. In this reaction an Li nucleus is bombarded by protons and neutrons emerge leaving the Be
nucleus behind, This reaction is endoenergetic, that is, the protons must have a certain minimum energy in order that the reaction should proceed at all. Monoenergetic neutrons between 10 kilovolts and 2 million volts may be produced by this reaction for the similar range of incident particle energies, 1.e.g up to 3.5 Mev .

The Li (p, n) reaction may be written in somewhat more detail in the following form

$$
\mathrm{Li} 7+\mathrm{H}^{1} \rightarrow \mathrm{n}^{1}+\mathrm{Be}^{7}+\mathrm{Q}
$$

where the energy of reaction Q is a negative quantity, one might suspect that instead of the above reaction the following reaction takes place

$$
\mathrm{Li} ?+\mathrm{H}^{1} \longrightarrow \mathrm{n}+\mathrm{Be}^{7^{*}}+\mathrm{Q}^{\prime}
$$

where Be? is an excited form of the Be nucleus and Q is a greater negative reaction energy, If this second reaction proceeds, the neutron produced would be no longer monoenergetlc. No evidence of this possibility has been found. It is true that the If ${ }^{7}$ nucleus (which is quite analcgous to the Be nucleus having as many neutrons as the Be ${ }^{7}$ pas protons and as many protons as the Be ${ }^{7}$ has neutrons) has an excitad stace of 485 kilovolts. There is some reason to suspect that the $B e^{?}$ has a similar excited state and the presence of such a state might glve rise to slower neutrons whenever the $I(p, n)$ reaction is used to produce neutrons above $1 / 2$ militon volts.

Energy Measurement of Fest Neutrons

The first method of measuring the energy of fast neutrons made use of the Wilson Cloud chamber. The arrangement by which this measurement may be performed is shown in the following figure:

On the left hand side the position of the neutron source is indicated. On the right hand side, a Wilson Chamber is schematically shown. The chamber is filled with a gas of small atomic weight such as hydrogen or helium. The path of the neutron is also indicated in the figure. The heavy line in the chamber is the track of a recoiling particle. If this track makes the angle θ with the continuation with the path of the neutron then from this angle and from the energy of the recoiling particle, the original energy of the neutron may be calculated. In particular, if the recoiling particle is a proton then the energy of the neutron is given by the equation:

$$
E_{r}=E_{n} \cos ^{2} \theta
$$

Where E_{r} is the energy of the recoiling particie and E_{n} is the original energy of the neutron, it is usual to count only the tracks which go in the forward direction and make a small angle θ (for instance, smaller then 10°) with the direction of the incident neutron. Then the factor $\cos ^{2} \theta$ in the above formula may be neglected and the energy of the recoiling proton is equal to the energy of the incident neutron.

One danger of this procedure is that the neutron might have been scattersd in the wall of the chamber and while the proton seems to go forward, it actually does not Iie in the continuation
of the path of the neutron which has hit it. Another difficulty is that the tracks of the recoiling particle are rather long and they may not end In the chamber. The energy of such recoils cannot be measured.

A further difficulty in evaluating results of cloud chamber measurements as well as of other measurements of fast neutrons is that a previous knowledge of the dependence of the collision cross section on the energy of the incident neutron is required. A typical dependence of this cross section of (wheh stands for elastic cross section) on the neutron energy E_{n} is shown in the following figure:

Unfortunately sometimes, as for instance, in the case of hellum this dependence is more involved as shown in the flgure:

In which a resonance is seen befwen 1 and 2 Mev. Thts resonance gives rise to a great number of tracks if the incident neutron has an energy between 1 and 2 million volts. Previous to the discovery of this resonance these many tracks were erroneously interpreted as showing the presence of many neutrons between 1 and 2 Mev.

Recently photographic plates have been used instead of cloud chambers In measuring the energy of neutrons. The emulsion of the photographic plates contains hydrogen. The recoll protons cause ionization and leave pevelopable grains in the wake which line up th the peth of the proton. Again as in the case of the

Wilson Chamber only those tracks are to be counted which make a small angle with the direction of the neutron. The photographic technique has the following advantages as compared to the Wilson chamber. First, the stopping power of the mulsion is greater, the length of the tracks is only a few thousandths of an inch and the danger that the track leaves the emulsion before ending is smaller. Second, in the photographic plate there need be much less meterial than there is in a Wilson chamber; consequently the danger of a scattered neutron causing a recoil is decreased. Thirdly, the photographic plate is continuously sensitive while the sensitivity of a cloud chamber is restricted to the moments of expansion. The - photographic technique has however the disadvantage that it becomes Inaccurate in counting slower neutrons. The recoils produced by such neutrons make few greins and since the number of the greins produced is used in determining the neutron energy, fluctuations in the number of grains make such onergy doterminations difficult. The photographic method must be calibrated by using a reaction of known energy.

A less straightforward, but perhaps more trustworthy method of measuring neutron energies makes use of the ionization chambers. Such a chamber is shown schematically in the following figure:

The neutron source is seen on the left hand side. The chamber is
filled with hydrogen. The field within the chamber collects the ions produced by the recoiling protons. On the right hand side the connection to the amplifying grid is shown in which the charge produced by the fons is amplified so as to give a measurable effect. The following figure shows these amplified current pulses, each of which corresponds to one recoiling particle according to the angle which the recoiling proton makes with the neutron. The recoiling particle will carry more or less energy and the size of the pulse will vary correspondingly.

Amplifier output

One may plot the number of pulses which have more energy then a given value E ageinst amplifier output pulse size or energy,

Very small pulses cannot be counted because they are obscured by the background or noise of the amplifier. By differentiating this curve, one obtains the number of recoiling particles of a given energy. This is shown in the following graph:

If the gas in the ionization chamber was hydrogen then a second differentiation gives the number of primary neutrons as plotted against their energy.

The figures given above refer to the case of monoenergetic incident neutrons. If a distribution of neutrons with various energies impinges on the ionization chamber, figures of the following kind may be obtained:

Instead of recording the pulses of various height, one might use an amplifier with a bias such as to cut out all pulses less than a certain energy. The sensitivity of such a counter is shown below:

Sensitivity

Below the bias the amplifier-detector will not respond at all. At
higher energies the sensitivity will rise to a plateau and then decrease.

Instead of using an ionization chamber filled with hydrogen gas, one might use a chamber in which the side fecing the neutron source is coated with a thick layer of paraffin.

Such chambers are then filled with argon. The argon nuclei are sufficiently heavy so that argon recoils carry relatively little energy and the blas may be adjusted in such a way as to count only the proton recoils originating in the paraffin. The sensitivity of such a chamber is shown in the following figure:

There is this time an increasing rise of sensitivity above the bias velue. This is due to the fact that higher energy neutrons produce protons which have a longer range in the paraspin and have therefore a bigger chance to get into the innfetion ormber.

Electric amplification hay be party roplacod by so-called gas amplification. This is done in proportiorst combers. Such a sounter is shown schematically in the following rigure:

The counter is filled with hydrogen. Instead of a collecting plate it has a collecting wire near which large electric fields are present. In this field electrons are accelerated towards the wire causing further ionization and in this way greater pulse result. With such proportional counters, pulses as small as 10 kv may be detected while the ionization chamber described above is insensitive up to 100 kv or higher.

Ionization chambers also may be fllled with BF_{3}. In such chambers the neutron reacts with the B^{10} nucleus giving rise to end products of total kinetic energy about 3 Mev . Thus sufficiently big pulses are produced.

Not only the measurement of the energy of fast neutrons but also the measurement of their number is a difficult question. In one method due to Fermi and Amaldi, the neutrons are slowed down In a water bath of sufficiently big volume surrounding the neutron source on all sides. After being slowed down, the neutrons are detected by rhodium or indium foils distributed in the bath. From the known cross sections of these foils for slow neutrons, one may determine the original number of fast neutrona. In order to do that one has to integrate over the verims positiona of the detectors in the bath. This last operation may be avolded if instead of the foils the slow neutrons are detected by manganese dissolved in the bath. By stirring this solution and by taking a sample afterwards, one may find the integral of neutron absorption in the bath and from this quantity the original number of fast neutrons may be calculated.

A theoretically very effective way of counting fast
neutrons and measuring their energy is shown in the following sketoh:

On the left hand side, an Incident neutron beam is shown. This beam impinges on an 1 onization chamber which on the side of the neutron beam has a thin paraffin film. This film is followed by a collimator which is a plate transversed by narrower channels pointing in the original direction of the neutron. These channels will let through only such protons whose direction coincides with the original direction of the neutrons. From the number of protons in the thin paraffin layer, from the collision cross section between protons and neutrons and from the number of pulses of various sizes In the ionization chamber the number of neutrons with various energies in the incident beam may be determined.

Unfortunately, the arrangement does not work. The reason is that there is too much hydrogen in other places than in the thin paraffin layer and consequently not all recoil protons come from that paraffin layer.

Fast Neutron Processes

We shall discuss the following processes which occur when fast neutrons impinge on nucle1. Elastic soattering, inelastic scattering, capture, (n, ω) process, (n, p) process, $(n, 2 n$) process. A cross section can be assigned to each of these processes. These cross sections are designated $\left(\sigma_{0}, \sigma_{1}, \sigma_{c}, \sigma_{(m, a)}, \sigma_{(n, p)}{ }^{\prime} \sigma_{(n, 2 n)}\right.$

One simple experiment which gives information about these cross sections 1 s to place a small scaterer between the neutron
sources and the neutron detector. If the scatterer is small enough and if the neutron has been beflected in the scattering process by a big enough angle, then this neutron in the original beam will miss the detector and no neutron outside the original beam will have an appreciable chance to be scattered into the detector. In this way the major portion of the elastically scattered neutrons will be missing from the beam. Similarly the inelastically scattered neutrons will be only partially observed. In the case of the inelastically scattered neutrons an argument may be given which shows that these neutrons are distributed spherically after the scattering process. In fact the scattering process may be described by the following equation:

$$
n^{1}+Z^{A} \longrightarrow Z^{(A+1) *} \longrightarrow Z^{A^{*}}+n^{1}
$$

This equation shows that the first act in an inelastic scattering process is the formation of a compound nucleus with the atomic number $A+1$. When this compound nucleus emits the neutron, the neutron will have forgotten about its original direction of incidence. Thus there is no reason for inelastically scattered neutrons to be scattered over particularly small angles and the scattering geometry described above will cause most inelastically scattered neutrons to miss the detector. The neutrons which are captured (with gamma emission) or which undergo a ($n,(\infty)$, or (n, p) reaction will be naturally missing from the original beam. In the ($n ; 2 n$) process the neutrons emitted are again spherically distributed and will therefore in all probability miss the detector. Thus practically whatever reaction a neutron has made with the scattering material the result will be that the neutron will not appear in the
detector. The intensity I transmitted by the scatterer will be related to the intensity I_{0} of the original beam by the formula:

$$
I / I_{0}=0^{-n \times d}
$$

Here small n is the number of nuclei per cubic centimeter in the scatterer, x is the thickness of the scatterer and σ is the sum of all cross sections or the total cross section.

LA-24 (24)
December 16, 1943

LECTURE SERIES ON NUCLEAR PHYSICS

Third Series: Neutron Physics
Lecturer: J.H. Williams

> LECTURE XXIV: PROPERTIES OF FAST NEUTRONS. CROSS SECTION MEASUREMENTS.

The total cross section of a substance for fast neutrons can be measured by a direct transmission experiment in which the source, scatterer, and detector are situated in what is known as a "good geometry". This good geometry is so defined that the solid angle subtended by the scatterer at either the position of the source or of the detector is small.

In this case the neutrons from the source strike the scatterer at practically normal incidence and any process undergone. by a neutron in its passage through the scatterer will result in its removal from the beam and its consequent failure to be recorded by the detector. The neutrons counted by the detector will consist almost entirely of those which have had no interaction with the atoms of the scatterer. A very small percentage of the detected neutrons will consist of those scattered (elastically or inelastically) through very small angles, but in a really good geometry they will constitute a negligible fraction. A transmission experiment in such a good geometry will therefore measure the total cross section for all processes. If the incident neutrons are normal to the scatterer, which may be supposed to have a thickness Δx and a number n atoms per cm^{3}, the ratio of the detected intensities with and without scetterer will be given by

$$
I / I_{0}=0^{-n \sigma \Delta x}
$$

where σ is the total cross section.
In contrast to this measurement with good geometry, transmission experiments in poor geometry are performed in order to find the elastic scattering cross section. In this case the solid angle subtended by the scatterer at the position of the detector is very
large. This makes it possible for neutrons scattered through large angles to be scattered into the detector, thus compensating

for those scattered neutrons which miss the detector. Since this compensation is almost exact, scattering processes alone would have no net effect on the intensity recorded by the detector. However, If the detector is biased so as not to record neutrons below a certain energy, the neutrons which are inelastically scattered will still contribute to the measured reductions in beam intensity along with all the other processes with the exception of elastic scattering.

This experiment with poor geometry and biased detector therefore measures the sum of all cross sections with the exception of the cross section for elastic scattering. To find the elastic scattering sross section alone, we therefore subtract the cross section as measured in poor geometry with a biased detector from that measured in good geometry.

Capture cross sections are easily measured if the nucleus resulting from the addition of the neutron is radioactive. The cross section can then be obtained from a measurement of the induced activity. When the resulting nucleus is not radioactive
there is no easy means for measuring the capture cross section. It sometimes happens that one isotope of a given element will become radioactive upon capture of a neutron while some other isotope of the same element will not. However, it is found empirically that the capture cross sections of isotopes of a given element are of the same order of magnitude. Therefore one can sometimes estimate the capture cross section of an isotope which does not give a radioactive product.

Dividing the energy range into roughly three regions, the resonance region from 0 to 10 kv , the medium fast region from 10 kv to $1 / 2 \mathrm{Mev}$, and the region of fast neutrons from $1 / 2$ Mev on up, one gets a behavior of the capture cross section with energy which looks like this:

In the resonance region there are sharp resonance peaks in the cross soction superposed on a $1 / v$ background. In the medium fast region the resonances are much broader and are discrete only for the lighter elements, say up to oxygen. For the heavier elements the broad levels overlap and give a smooth behavior something like $1 / \mathrm{v}$. In the fast region above $1 / 2$ Mev the behavior is more like $1 / \mathrm{E}$. For the very fast neutrons the cross section is determined principally by the area of the nucleus and the competition with other
possible processes like inelastic scattering which becomes more probable as the energy of the neutrons Increases.

The cross section for an (n, ω) or an (n, p) reaction can be measured by putting a sample of the element in question inside an ionization chamber which will count the alpha particles or the protons directly, when the chamber is placed in a neutron flux. The cross section for an ($n, 2 n$) reaction is extremely difficult to measure except in the case that the residual nucleus is radioactive.

Inelastic scattering of a neutron is characterized by a reduction in the energy of the neutron as a result of the scattering process. In light elements like hydrogen or helium or carbon this reduction in energy comes from the normal classical collision of two particles of comparable mass and such collisions should really be called elastic. However for the heavier elements like lead or gold, the neutron enters the nucleus and emerges with reduced energy leaving the residual nucleus in an excited state. The excited nuclous then fells down into the ground state with the emission of a Υ-ray, Thus a nuclear inelastic seattering is always accompanied by one or more q-rays. The probability for inelastic scattering incroases with increasing atomic weight since the heavier nucle1, having meny constituent particles; have a large variety of closely spaced energy levels into which the nucleus can be raised by the addition of the energy of the incident neutron. Qualitative information about inelastic scattering can be obtained by measuring the activity induced by the inelastically seatered noutrons in various detectors which respond to neutrons in different energy ranges. For example, silver or rhodium can be used
as radsoactive detectors of slow neutrons and aluminum or silicen as detectors of the fest neutrons. By measuring the activities in these detectors with and without the scatterer one can get some idea of how the inelastically scattered neutrons have to be degraded in cnergy Experiments have also been performed in which thor-ray intensity which accompanies any inelastic scattering is measured. The magnitude of this intensity gives an indication of the cross section for the inelastic scattering. However the experiment is complicated by the possible presence of γ-rays in the source. Not much information about the energy of the inelastically scattered neutrons can be obtained from the energy of the z-rays since the excited nucleus will in general emit a variety of \mathcal{Y}-rays of different energy corresponding to the many states into which the nucleus can fall before reaching the ground state. Complete information would be given by a measurement of the spectrum of the inelastically scattered neutrons but this is a very difficult thing to do.

BIOLOGLCAL EFFECTS OF RADIATION. PROTECTION.

Electromagnetic radiation like x-rays or γ-rays damage tissue by producing fast electrons (through the photoelectric effect or the Compton effect) which cause fonization and disruption of the molecular structure of the tissue. These electrons have a relatively small ionization per unit path length and a correspondingly long range. Neutrons will in many cases give rise to energetic heavy charged particles like protons or arparticles which will have a vory high specific ionization but a short range. Fast protons could be produced by collision of a fast neutron with a
hydrogen atom in one of the molecules. Slow neutrons may be captured and give rise to r-rays or in some cases, like those of boron or lithium of nitrogen give a-particles or protons through (n, a) and (n, p) reactions.

Ageinst γ-rays, lead or concrete walls of sufficient thickness give good protection. Lead is of no value against neutrons, however. Materials containing hydrogen, like water, paraffin, or concrete, are generally used because of their offectiveness in slowing the neutrons down to a point where they can be captured. The γ-rays resulting from the capture can be absorbed by using lead sheets.

December 21, 1943

LECTUPE SERIES ON MUCLEAR PHYSICS

Fourth Series: Two-Body Problem
Lecturer: C. L. Critchfield

: LWCTURE XXV: NUCIEAR CONSTANTS

There are two kinds of nuclear quantities: quantized and not quantized. The quantized numbers are: mass number; charge, spin, statistics and parity. The quantities that are not quantized are the nuclear radius, the nuclear mass, the magnetic moment and the electrical quadruple moment.

It is believed that eventually there will exist a thenry of the quantized nuclear numbers correlating these to each other. Such a theory shall link the varjous numbers to each other and possibly to other physical quantities. Up to now there has been nnly one significant attempt in this direction. Pavil tried to correlate spin and statistics by stating that particles with a half integral spin have Fermi-Dirac statistics while particles with an integer spin have Bose-Einstein statistics.

The neaning of Fermi-Dirac statistics may be explained with the help oi the example of the H_{2} molecule. Let us assume that the spins the two protons of this molecule (which have the value $1 / 2^{2}$, are parallel (triplet state). Then Fermi-Dirae statistics, which appilies to the protons, postulates that an interchange of the positions of the protons will cause the wave functions to change sign.

The consequence is that a rotational state with no node ($J=0$) dies not occur simultaneously. All even values of the rotational quantum number J are excluded. Odd J valves are allowed and the lovest state corresponds to $J=1$. This state of hydrogen is called orthohydrogen.

Let us now consider the D_{2} molecule. Let us again assume that the spin of the deutrons (which have the value 1) are para11el. Then the Bose-Einstein statistics which applies to the deuterons postulates that the even rotational states of the molecule are alone present while the odd rotational states do not scour. This state of the deuteron molecule is called orthodeuteron.

There also exists a second state for both the hydropen and the deuter on in which the spins of the nuclei are not parallel and in which those rotational states are allowed which did not occur in the ortho states and those rotational states are missing which were present in the ortho-molecules. These states are called parahydrogen and naradeuterium. The experience about the statistics of nuclei is a strong argument in favor of the nuclei being constituted from neutrons and protons rather than from protons and electrons. Assuming Fermi-Dirac statistics for all these elementary particles (protons, electrons and nevtrons) it follows that a nucleus containing an odd number of sich narticles behaves according to the Fermi-Dirac statistics whilo a nucleus containing an even number of particles has Bose-minstein statistics. Now the deuteron, ifit were cnnstituted from protons and electrons, would have to contain two protons and one electron, that is, an odd number of particles and should, therefore, heve

Fermi-Dirac statistics, whereas in reality it has Bose-Einstein statistics. If on the ther hand, protons and neutrons are the constituents of the nuclel, a deuternn is made up of one proton and one neutron, that, of an even number of particles which clearly predicts Bose-Finstein statistids.

Among the non-arantized guantities characteristic of nuclel, the radius can not be determined very accurately. Approximete velues have been obtained at an early date in the history of nuclear physics by scattering of alpha particles. The princtple of this determination is that when the alpha particle approaches to within the sum of the radii of the scattering nuclef and the alpha particle then the Rutherford scattering law ceases to hold. From this anomalous scattering of alpha particles nuclei radil In the order of $10^{-12} \mathrm{~cm}$ have been obtained.

The electric quadruple moment of a nucleus for a sharply defined quantity has not been determined up to now with very high precision.

It has been first disoovered and measured by investigating the hyperfine structure of atomic spectrum. This hyperfine structure is due to the interaction of the magnetic moment of the electron (whtec may be due to the spin or the orbital moment of the electron with the magnetic moment of the nucleus. Different relative orlentations of the nuclear and electrical angular monents produce states of slegtly different energies and cause a narrow splittine of the spectral lines which is as a rule less than one wave number. The magnetio interaction described above gives a certain regularity in the hyperfine structure. Small deviations from this regularity were discovered in heavy nuclei. These deviations could be explained by an additional term in the energy
explanation which depends on the square of the cosine of the angle fncluded between directions of the nuclear and electric angular momonts. Physically this addtinnal term is due t? an electric quadruple moment of the nucleus which interacts with the inhomogeneity of thr electric field produced bv the electrons. There is also ne rathor direct determination of the ovadruple moment of the devteron which we shall discuss later.

The masses of the nuclei are known quite acourately from mass spectrogranhic work. This method uses crossed electric and megnetic fields which focus ions of a siven weight into a given position Recent accurate determinations of masses by this method have been carried nut be Bafnbridge for light nuclei and by Dompster for hoavy nuclei. Bainbridge was able to obtain high intensities by focusing a beam of great angular deviations. In his setmup the position of the focus depends on the mass of the nucleus very accurately as a linear function. In this way it was possible to obtain mass determinations of high accuracy by comparing the focus of inns of noarly the same weight. Thus in his early work he compared the mass of the hellum i m with the mess of tho trimatomic DHF. The actual value deduced from this measurement for the mass of the deuternn turned out to be erroneous because it was based on the proml935 ratio of hellum to oxygen masses given by Aston. More rocent work of Bainbridge carried out with abudant deuterium snurces and evaluated with the correct helium to nxygen ratio gave very accurato deuteron masses.

Nuclear massos are also used in balancing reaction enorgies. A systematic study of these roaction energies load Bothe
and Rntherford in 1935 independent from each other to recognize that the earlior measiments in the hellum to oxygen retio there must hevo been an error.

The folloming conventions on nucloar masees should be rmomered. In the units used by physicists 0^{16} has exectiy the mass 16. In the units which the chenists use the natural isotopie mixtre of xygen has exactly the atmic wofpht 16. In every case the masses of neutrol etons rathor than the masses of nucloj ore given.

Detorminatins of nuclear massos are cinsely connected with the history of tho afscovery or deutorium. At first the chemfal and tho mess snectrographte detormination or tho mass of hydrosen atom somed to agrer; thus Indicetine that hydrogen hes no isotope. With the discovery on 0^{18} isotope howover it became necessery to postulate that also hydrofen has a heavier isotope. Birge and Menzel recognized this and followine thoir suggestion Urey end his onlaborators searched and found the heavy hydrofen.

A Ifst of the best knimn values for the masses of the light atoms Is given in the fnlumang tahle. Tho last decinal place in this toble is uncertin.

n	1.00893	H^{3}	3.01704
H	1.00812	He^{3}	3.01701
D^{2}	$2 . C 1472$	He^{4}	4.00388

From the last values one cen drew conclusions concorning the binding energy of tho nuclei. Thus the binding onergy of the douteron is 2.16 fov whilo the binding rinergy of the helium nucleus is 28 mev .

It is surprising that by morely doubling the number of perticies 158 within the nucleus the binding nergy should be increased by a factor of 13 .

The magnetic moment is also known with very hifh accuracy. The pest determinations were carried out at Columbia University by Rabi and his enllaborators. They used an ingenious method. The measurements wore carriod out on molecvles like H_{2} or D_{2} in Which the electrons are paired and the effect of the electron spins cancel each other. A beam of the molecule passes consequently through 3 magnetic fields. The first of these fjelds is inhomogenous and deflects the molecular beam. The second field is hombgenous. Around this field the nuclear spins perform a processing motion. The therd fiold is inhomogonous again and brings the molecular beam back to a focus in which the molecnlos moet independent of tho spin orientation or the nuclei. In addition to this arrangepent an oscillating magnetio fiold is suporposed on the homogenous magnetic fiold. This oscillating field irparts onergy to the nuclei causing the nuclear soin to jump from one stete into another. If this happens the second inhomogenous field will no lonfor componsate tho difloction causod by the first inhomogenous ficld and any change in oriontation coused by the oscillating fleld wil five rise to a diminished number of molecules armiving in the focus. A chanfe in the nuclear spin oriontation will occur however only i° the frequency of the scillating magnetic ficld is in rosonance with the precession of the nuclear spin. This precession depends on the strength of the homogenous field, on the magnotic moment and on the value of the nuclear spin. The last guantity may be determined from other experiments, for instenco by the analysis of the spectrum.

In this way then, the magnetic moment may be determined to a high accuracy, Actually the procision of the oxporiments is limited only by the length of the region of the homogenous electric field in that even the time of flight of the molecule in this region is short. The accuracy of rosonance between an oscillating magnetic field and precession frequently is limited. Very accurate values have been obtained by the relative mennitudes of magnotic moments and the absolute values are chiefly uncertain due to difficulties in accuratoly measuring the magnitude of the homogenous magnetic fiold.

For the simplest mnasurement of the magnetic masurements of proton and deutron the molecule HD is most appropriate. If the molecular beam is formed at a surficiently low tomperature and the molocules are present in the 0 rotational state, the minima of the beam intensity in the focus will enrespond to precession freaiencies of the H and D nucleus.

A more complex pleture is obtatned if tho H_{2} molecule is used. Here the 0 rotational state can not be used bocause in this state the nuclear spins have opposite directions and the magnetic moments compensate. Therefore the first rotational state $(J=1)$ is to be used. In this state also the spin of the nuclol add up to no and thero wil result altogether 9 rotational and spin statos. The cnorgios of those states are afectod by the magnetic interaction betweon the protins and by the motion of the dectrons induced by moloculer rotation. Between tho 9 states mentioned above, two sets of 6 transitions are possible and correspondingly one observes two sets of 6 dips of intensity. In order to explain tho exact froquoncy at which these dips occur, assumptions have to be mode about the interaction between the magnetic momonts of the nuclei and the magnetic fiold produced by
the rotating molecule. Giving appropriate values to these conditions the position o^{f} the 6 dips can be explained.

Havtng determined the molecular quantities that have an effect on tho nuclear megnets the position sf the dips in D_{2} mey be predicted. For this molecule one may investigate the steto in which $J=1$ and also tho spin is equal to 1 . The predictions however did not check with the experimental results and agreement could be obtained only by assuming an additional term in tho onergy which deponds on the square of the onsine incineod by the nuclear moment and tho molecular axis. This is the kind of term that should be if the deuter n hed a quadruple moment. Rabi, Ramsey and othors have indeed been led to assume an electric quadruple moment for the doutorium.

The discovery of the ouadruple moment of the deuterium came as a surprise because calculations on the binding onergy and other properties of the deuteron were based on a simple symmetric model of the deuteron which did not permit the existence of any quedruple moment. The proscnce of such a moment shows that even in the simplest two-body problem of nuclear physics quadruple forces apnoar. The following table gives the magnetic moments of the simplest nuclei mosured in units of nuclear magnitrons.

H^{1}	2.785
n^{1}	-1.93
D^{2}	

The negative side attached to the magnetic moment of the neutron is necessary in order that the proton and the noutron magnets linod up in a parallel way shovld givo at loast apnroximotoly the magnetic moment of the deuteron.

It is remerkable that the megnotic mononts seem to be rather closely ooditive. Tho ngebraic sum of the proton end noutron monents is closely earol to the moment of the douteron. This should be expocted or hond only if the deuteron had a sinple symnotric strocture and the prosence of a duadruplo momont shows that there is some dovietion from symotry.

The megnetic monont 0 the novtron has boon mosured by Bloch and Alvarez. The nrinciple of the mosuranent is simsiar to thet usod by Rabi and his cojnabontors but instond af the first and last inhmoronns monetic fiolds, they used two foromagnetic shoets. It has beon shown py Rloch that the seatering of noutrons by ferromagnets deponds on the oriontation of tho spin rolntiva to the magnotic fiold in the perromernet, thorefore tho ferromornotic shects can bo nsed as polnrizers and andyuors botwoen the two sheets. The neutrons pass thergha homogonous magnetic firle on to mbten on oscillating fiold is suporposed. This part or the outfut acts in the semo may as the corrosponging part in the Columbia moasuronents and resmances manifost themocivos ogen by changes in intenstr of tha rem in tho focus.

LECTURE SRRJTS ON NUCLPAR PHYSICS

Fourth Series: Two Body Problem Lecturer: L. C. Critchfield
LECTURE XXVI: NETTRON-PROTON TNTERACTION

The earliest attempts to build a more detailed theory of nuctear forces were concerned wlth explaining the hinding enerptes of the lifht nucled, particularly of the deuteron. It was noted that the bindin energy of the helium nucleus was thirteen times that of the devteron altho"gh the numer of attractive links between four particles is only six, at most, compared with one between two particles. Yipner pinted ont that the extraordinarily large binding in the alpha particle compared with that of the deuteron indicated that the kinetic energy of the particles in the devteron almost compensates the mutual attraction and that this can be the case if the attractive forces have a very short rance. i.e., the rance of forces is smaller than the wave length of the particles. In the alpha particle, on the other hand, the number of attractive bonds is proportinately greater than the increase in kinetic energy, and a lowor average energy is possible.

Short ranfe forces between nuclear particles makes possible many simplifications in the theory of the deuteron. Essentially, we may say that if neutron and proton are farther apart than a distance a, they do not influence each other apreciably, but at separations less than a string attractive forces act and there is
a deep valley in the plot of potential energy against separation. In terms of wave concepts there is a strong refraction or the neutron and proton waves near their center of gravity. Since the width of the standing wave that represents the stable deuteron Is large compared with that of the refractive region, however, the exact shape of the region cannot be important to the description of the state. Accordingly, it may be assumed that the potential energy is a constant V_{o}, inside the radius a and zero outside it.

Let r be the relative condinate of the proton with respect to the neutron, M the mass nf proton or neutron, and E the energy of tho system. The move emanation is then, reducing the two body problem to a one body problem in the usual may:

$$
\frac{\hbar^{2}}{M} \nabla^{2} \psi(r, \theta, \varphi)+(E-v) \psi(r, \theta, \varphi)=0
$$

We wish the solution of lowest energy for which we know $E=-5=$ -2.16 Mev. Since the attractive potential exists only at small distances we consider only the spherically symmetrical solution (an angular momentum keeps the particles apart, i.e., the wave functions wald have a node through $r=0$). Me accordingly let

$$
\psi(r, \theta, \varphi)=\frac{u(r)}{r}
$$

and the wave equation becomes

$$
\frac{d^{2} u}{d x^{2}}=\frac{M}{h^{2}}(V-E) u
$$

Outside $r=a, V=0$ and $v=A e \sqrt{-r} \mathrm{Me}^{2} \hbar^{2}$. The solution with positive exponent is excluded by the condition of finite wave functions. Inside $r=a, V=-V_{0}$ a negative energy that is large in absolute value compared with E.

The cosine is excluded. To infin these two solutions smoothly their logarithmic derivatives must be equal l

$$
\begin{gathered}
\left(\frac{u}{u}\right)_{i n}\left(\frac{u}{v}\right)_{\text {out }} \sqrt{\frac{M\left(v_{0}-c\right)}{\hbar^{2}}} \cot d \sqrt{\frac{M\left(V_{0}-\epsilon\right)}{\hbar^{2}}} \cdot \frac{M e}{\hbar^{2}} \\
a \sqrt{\frac{M V_{0}}{\hbar^{2}}}=\operatorname{arc} \cos \sqrt{\frac{g}{V_{0}}} \cong \frac{\hbar}{2}
\end{gathered}
$$

Whence

$$
\mathrm{a}^{2} V_{0} \cong \frac{\pi^{2} h^{2}}{4 M}
$$

Thus the existence of the dolteron suffices to determine the prom dot ar the depth of tho potential well and the sourer of the width of the well. If me express V_{0} in units of + me 2 and a in units of e^{2} / mc^{2} me get

$$
2 V_{0} \simeq 25
$$

An incopendent determination of a or V_{0} could be made by solving for the wave functions in the three or four body problems, or from scattering experiments. The best indication of the size of a comes from an interpretation of the scattering of protons by protons, It is then assumed that a is the same for the deuteron. In the units chosen the best value of a is apparently about unity:

So far, only the space coordinates of the particles have been considered. It is well established that the ground state of the deuteron is a triplet, le., the spins of neutron and proton are parallel. Thus the above rough calculation applies to the triplet state. Furthermore, the wave function assumed is spherically symmetrical so that no quadrupole moment is obtained. In spite of these defects, however, the scattering induced by the forces thus derived will be calculated and compared with experiment.

Scattering by short range forces is particularly easy to compute, especially if the wavelength of the colliding particles is longer than the range of forces. Under these conditions a finite orbital angular momentum will prohibit the particles from coming close enough together to be attracted and there is no scattering if the particles pass each other at a distance larger than a waveLength. Consider a plane wave for the neutron incident upon a prom ton. This wave represents a definite relative velocity v of "collision" but for all possible values of the impact parameter and hence all angular moment. According to the foregoing argument deflection will be experienced only by those collisions of zero angular momentum, \mathcal{L} e, in the spherically symmetric state. Let the incident beam be represented by $\Psi=e^{i k r} \cos \theta$. The spherical part of Ψ In absence of a potential well can be determined by averaging over all θ.

$$
\Psi_{0}^{0}=\frac{\sin k r}{k r}
$$

In the presence of a field the wave will be strongly refracted inside $r=a$ and, so far as the wave at large distances is concorned, the effect will be to introduce a phase shift δ. The general form of the spherical part with potential well is then

$$
\Psi_{\mathrm{v}} \circ=c \frac{\sin (k r+0)}{k r}
$$

with 0 and δ to be determined. The wave ${ }^{\circ}$ must represent the spherical part of the incident beam plus a scattered wave, and the latter must have the form $\mathrm{se}^{\mathrm{ikr}} / \mathrm{kr}$. Hence

$$
\begin{aligned}
& -\frac{1}{21}\left\{e^{1 k r}-e^{-1 k r}-\left[e^{1(k r+\delta)}-e^{-1(k r+\delta)}\right]\right\}-\delta e^{1 k r} \\
& 0=e^{1 \delta} \quad s-\frac{e^{218}-1}{2_{1}}=+e^{1 \delta} \sin \delta
\end{aligned}
$$

The number of scattered neutrons per unit volume is then

$$
\frac{\sin ^{2} \delta}{k^{2} r^{2}}
$$

and the total number of particles scattered by the proton per second is

$$
\frac{4 \pi}{k^{2}} \vee \sin ^{2} \delta
$$

The incident comment density postulated is v Fence the effective cross-secticn resented for scattering is

$$
\sigma=\frac{4 \pi}{k} \sin ^{2} \delta
$$

Determination of 6 can be made approximately as follows: the bombarding energy of the neutrons is assumed to be small compared with depth of the potential well, hence the wave function inside the range of forces, e, is substantially the same as for the stable deuteron. To join functions smoothly, therefore

$$
\begin{aligned}
& -\sqrt{\frac{\epsilon M}{\hbar^{2}}}=k \cot (k a+\delta) \\
& \hbar^{\frac{M}{2} k^{2}}=\frac{1}{\sin ^{2}(k a+\delta)}-1
\end{aligned}
$$

neglecting ka compared with δ and calling \in; the absolute value of the binding energy of the deuteron

$$
\sin ^{2} \delta=\frac{1}{1+6 / E} \quad \sigma=\frac{4 \pi h^{2}}{M(\epsilon+E)}
$$

Thus the binding energy of the deuteron determines the scattering cross-section, at least if the collision is sufficiently slow, Com parison with experiment, however, showed that the predicted crosssection is a little high at high energy ($E>2 \mathrm{Mv}$) and about a factor 10 too small at low energy. To explain the discrepancy Wigner pointed out this cross-section is calculated from what is known about the triplet state of the deuteron only and that it is pose sable to choose a "binding" energy, $e^{\text {, for the singlet state in }}$ such a way as to account for the experimental results. Since three out of four collisions between neutron and proton are triplet collisions and one is singlet the result for the complete cross-section is

$$
\sigma=\frac{4 \pi \hbar^{2}}{M}\left\{\frac{3}{4} \frac{1}{\epsilon+E}+\frac{1}{4} \frac{1}{\epsilon^{\prime}+E}\right.
$$

E is the energy of collision in the center of mass system and hence is one-half the bombarding energy if the protons may be considered at rest. The value of E^{\prime} needed to fit experiments is of the order of 0.10 Mev but the sign of c is not determined because $\sin ^{2} \delta$ is determined from the square of the logarithmic derivative at $a_{\text {. }}$

By taking into account the effect of the finite kinetic energy inside the distance a the expression for σ becomes, in next approximation

$$
\sigma=\frac{4 \pi \hbar^{2}}{M}\left\{\frac{3}{4} \frac{\left.\left.\left.1+(\sqrt{M \epsilon} / \hbar)_{a}+\frac{1}{4} \frac{1+(\sqrt{M \epsilon} / \hbar) a}{\epsilon+E}\right\} .\right\} .\right\}}{\epsilon}\right\}
$$

Although the spherically symmetrical solution for the deuteron must be incomplete because of the existence of the quadrupole moment it represents the gross properties quite well. Before considering refinements of the theory, therefore, it is worthwhile to study the implied dependence of the force between neutron and proton upon their relative spin orientation. With parallel spins there is a binding energy, $\epsilon=2.16$ Mev and with opposite spins (singlet state) the binding energy is very close to zero. Thus the relation between V_{0} and a^{2} obtained in an approximate way above applies very closely for the singlet state. For the triplet the exact relation determining $V=V_{1}$ is, in the units used above,

$$
V_{1}=\frac{25.3}{a^{2}}+\frac{13.2}{a}+2.4
$$

Thus for $a=1$ the potential well is almost twice as doop for the triplet state as for the singlet. This indicates that the spins of the nuclear particles play a dominating role in the attraction between neutron and proton.

LA 24 (27)
December 28, 1943
LECTURE SERIES ON NUCLEAR PHYSICS
Fourth Series: Two Body Problem Lecturer: C.I. Critchfield IECTURE XXVII: I) SPIN-SPIN FORCES IN THE DEUTER ON II) PROTCN-PROTON SCATTERING
I.

The theory that has been developed for the deuteron is generally satisfactory except for describing the electrical quadrupole moment. In order to account for the quadrupole moment Schwinger used a spin-dependent interaction similar to that between mag-
noetic dipoles. The wave equation then becomes

$$
=0
$$

where $\stackrel{+}{\mathrm{F}}_{\mathrm{N}}$ is the neutron spin operator (Pauli matrix), of the prom ton spin operator and γ determines the amount of the spin-spin potential. Since the additional force introduces components of \vec{r} In a nonspherical combination it is in general impossible to assume spherical symmetry for the solution. For the singlet state of the deuteron, however, the dipole-dipole interaction cannot affect the motion of the particles and its average value is zero so the same equation as before is obtained and the same relation between V_{0} and a^{R} holds. For the triplet state the interaction does not vanish but rather tends to change the spin directions of the particles and hence also their orbital motion. The interaction is invariant to reflection in the center of symmetry so the orbital state into which the deuteron might go is limited to even parity and the only possi-bility is a D state. Symmetry of the operator in σ_{N}, and σ_{p} shows that the spins of the neutron and proton remain parallel and the solution will be a mixture of ${ }^{3}$, and ${ }^{3}$, states. The amount of 3_{D}, that is mixed with the ${ }^{3} \mathrm{~S}$, to obtain the lowest energy is determined by the size of γ which is, In turn, chosen to give the correct value of the quadrupole moment, which is $2.73 \times 10^{-27} \mathrm{~cm}^{2}$. The observed quadrupole moment is positive and that means that the charge distribution is "cigar shaped". Mathematically the quadrupole moment is defined as the average of $(1 / 4)\left(3 z^{2}-r^{2}\right)$ over the charge distribution obtained from the solution of the wave
equation Qualitatively it is readily demonstrated that when two parallel dipoles interact the energy will be lowest when they lie on an axis and that such a configuration is brought about by in terforence between D waves and S waves. The part of the D wave that varles as $3 \cos ^{2} \theta-1$ will interfere with the s wave because the spins are the same for the two waves. Along the axis, therefore, amplitudes add whereas the parts of the D wave that are large near $\theta=(\mathrm{n} / 2)\left(\mathrm{m}_{\mathrm{I}}>0\right)$ do not have identical spin magnetic quantum numbers and intensities add. The result is, with one phase of D wave, a prolate charge distribution about the spin axis and with the other phase an oblate charge distribution. The sign of γ is thus chosen to give the prolate distribution and the value of y appropriate to a range of force $2.80 \times 10^{-13} \mathrm{~cm}$ ($a=1$) is 0,775. The corresponding depth of potential weil is $V_{0}=27 \mathrm{mo}^{2}$ which is close to that for the depth of the singlet well $V_{0}=25 \mathrm{mo}^{2}$. In fact Schwinger points out that if the range of forces had been taken $2.7 \times 10^{-13} \mathrm{~cm}$ the two potentials would heve been the same and the entire dependence upon spin of the noutron and proton is imparted by the dipole-dipole interaction. It may be noted here that if this dipole interaction had been due to the magnetic moments it would be of the oposite sign and its expeoted value much smaller then that found above.

The amount of ${ }^{3}$ D-wave in the lowest state is found to be only 4 percent. The characteristic influence of the dipole forces on scattoring, capture and photoelectric disintegration are correspondingly small, amounting in general to 2 percent corrections. Formulas obtained in the simple S wave theory are therefore
adequate for most calculations and fall only in the true interpretation of the forces and in predicting the quadrupole moment. The remarkable effect of this ovidentiy vory small admixture of orbital motion is that essentially the same depth of potential well obtains for both triplet and singlet state, In other words, the difference in depth found necessary in the spherical states is Just made up by the strength of the spin couping but the 3_{D} state to which the ${ }^{3} \mathrm{~s}$ is coupled is very hard to excite.

A reasonable theory and method of calculation is then avalable for the deuteron provided that the energies are not too high. At high energy of collision the potential well can no longer be considered small compared with a wave length and the shape of the potential curve will matter. This energy is roughly equal to the depths of the potential wells, say 10 Mev , in the center of mass system. Actualiy, the noutron-proton cross section has been observed at 24 Mov (12 Mev in the center of mass frame) by Sherr and the results are feirly well accounted for by the simple theory Includine P-waves. Above this enerey the offects of the shape of the wedl and of the response to collisions with nigher angular momentum should be in convinoing evidence.

II.

The range of fores between neutron and proton has been taken to be $2.8 \times 10^{-13} \mathrm{~cm}(\mathrm{a} 1)$. There are two methods of establishing this value for the range. The first to be considered is the scattering of protons by protons and detection of deviations from the Rutherford law. Deduction of the range of forees in the deuteron
from these results assumes that the ranges are the same. The second method involves making estimates of the masses of H^{3}, He^{3} and He^{4} from the theory of the deuteron.

As in the case of neutron-proton forces the experimental energies avaliable are capable of finding only the nuclear forces exerted between two protons when they collide in an s-state. The Interaction may therefore again be represented by a "square well" but calculation of the influence of such a "well" on the scattored distribution is somewhat more complicated for two charged particles There are three reasons for the complication: The first is that the scattering effect of the "well" is superposed on that of the electric fields so that interference terms appear in addition to those due to nuclear forces alone; the second reason is that the Coulomb forces are long range and modify the incident weve even at infinite distance so that the simple exponentials are not solutions at any distance from the point of collision. In addition, the collision of two protons if influenced by the statistics of the particles and a second kind of interference is introduced. The Fermi-Dirac statistics admit collision in a l_{S} state and exclude the ${ }^{3}$ S so we are here concerned only with the nuclear forces between protons of opposite spin.

The wave equation of the reduced system in
is $\quad \frac{h^{2}}{M} \nabla^{2} \psi(r, \theta, \varphi)+\left[\frac{M v^{2}}{4}-\frac{e^{2}}{r}\right] \psi(r, \theta, \varphi)=0$
where v is the relative velocity at infinite separation. Let $k \equiv M y / 2 \hbar$ and $\eta=o^{2} / \hbar v$ and let $u(r) / r$ be the spherically symmetrical part of the solution. Then the equation for $u(r)$ becomos

$$
\frac{d^{2} u}{d r^{2}}+\left(x^{2}-\frac{2 k \eta}{r}\right) u=0
$$

If we replace u by ye 1 kr and neglect yr compared with alky wo get

$$
1 y_{r}-(\eta / r) y=0
$$

or

$$
y=\text { const } x \theta-1 \eta \ln k r
$$

and the asymptotic form of uts not simply $e^{1 \mathrm{kp}}$ but

$$
\text { u No } 1 k r-1 \eta \ln k r
$$

The some form is obtained, of course, for any angular momentum. In a simian way the asymptotic form of the incident beam can be shown to be

$$
\psi_{1 \sim} e^{1 k z+1 n \ln k(r-z)}
$$

Following the example of the neutron-proton scattering we seek a solution in the form of an incident beam plus pure scattered wave. The asymptotic form must then bo:

$$
\psi(r, \theta) \sim \theta^{1 k z+1 n \ln k(r-z)}+f(\theta) \frac{e^{1 k r-1 \eta \ln k r}}{r}
$$

where θ is the angle in the center of the gravity system. Deflectrons by θ in that system are measured as deflections of (1/2) θ in the laboratory Derivation of $f(\theta)$ ls a long mathematical process and w111 not be presented here. Suffice it to say that the result of the wave mechanical calculation for dissimilar particles is Identical with the classical calculation of Rutherford. This means that

$$
\sigma_{R}(\theta)=|f(\theta)|^{2}=\left(\frac{e^{2}}{M_{v}^{2}}\right) \frac{2}{s \ln (1 / 2) \theta}
$$

Furthermore, the phase of $f(\theta)$ can be determined as a function of an angle by considering that the wave scattered directly back will
have the same asymptotic exponential form es \mathcal{V}_{1} except for a change in sign. This is the case if

$$
f(\theta)=-\frac{e^{2}}{M v} \csc ^{2} \frac{1}{2} \theta \theta^{-i n \ln (1-\cos \theta)+21 \beta}
$$

The sign and the phase, β, are not given by the considerations but β is a function of velocity only. The complete theory shows

$$
21 \beta=\ln \frac{\Gamma(1+1 \eta)}{\Gamma(1-1 \eta)}
$$

The spherical portion of the wave in a coulomb field has the asymptotic form

$$
u=e^{1 \beta} \frac{\ln (k r-n \ln 2 k r+\beta)}{k r}
$$

The effect of the forces between protons will be to introduce a constant phase shift K_{0} in such a way as to leave the incoming part of u unchanged. The form of the wave that has been influenced by the nuclear forces is therefore

$$
u_{f}=e^{1 \beta+i K_{0}} \frac{\sin \left(k r-\eta \ln 2 k r+\beta+K_{0}\right)}{k r}
$$

The asymptotic form of the perturbed wave then becomes

$$
\begin{aligned}
\psi(r, \theta)= & e^{1 k z}+1 \eta \ln k(r-z) \\
& -\frac{e^{1 k r}-1 \eta \ln k r}{r} \int \frac{e^{2}}{M^{2} \sin ^{2}(1 / 2) \theta} e^{-1 \eta} \ln (1-\cos \theta)+21 \beta \\
& -\frac{1}{21 K}\left(e^{21 K_{0}-1}\right) \theta^{21 \beta-1 \eta \ln 2}
\end{aligned}
$$

If the particles were not identical the cross section would be given by the absolute square of the curly brackets. In classi-
cal theory, the cross section for ldentical particles is the sum of the cross sections $\sigma(\theta)+\sigma(t+\theta)$. But in quantum theory there is an additional consideration to be made. If one proton is at r_{a} and the other at r_{b} the wave function describing the state is

$$
\psi_{1}\left(r_{a}\right) \psi_{2}\left(r_{b}\right)+\psi_{1}\left(r_{b}\right) \psi_{2}\left(r_{a}\right)
$$

In the singlet spin state and $\psi_{1}\left(r_{a}\right) \psi_{2}\left(r_{b}\right)-\psi_{1}\left(r_{b}\right) \psi_{2}\left(r_{a}\right)$
In the triplet. Therefore (since $r_{a}(\theta)=r_{b}(\pi+\theta)$) the scattering at $\mathbb{T}-\theta$ which is thesame as at $\mathbb{T}+\theta$ interferes constructively with that at θ in the singlet collisions, $1.0,1 / 4$ of the time, and interferes destructively in triplet collisions (3/4). If we call the quantity in curly brackots $f(\theta)$ the cross soction for scattering in unit solld angle at θ then becone s

$$
\sigma=\frac{1}{4}\left|f_{v}(\theta)+f_{v}(\pi-\theta)\right| 2+\frac{3}{4}\left|f_{v}(\theta)-f_{v}(\pi-\theta)\right| 2
$$

This effect was first discussed by Mott.

$$
\begin{aligned}
\sigma(\theta)= & \left(\frac{\theta^{2}}{M v^{2}}\right)^{2}\left\{\frac{1}{\ln 4}(1 / 2) \theta\right. \\
\cos ^{4}(1 / 2) \theta & \frac{1}{\cos ^{2} \ln \tan ^{2}(1 / 2) \theta} \\
& +\frac{\sin ^{2}(1 / 2) \theta \cos ^{2}(1 / 2) \theta}{k^{2}}-\frac{\sin K_{0}}{k}\left[\frac{\cos \left(\eta \ln \sin ^{2}(1 / 2) \theta+K_{0}\right)}{\sin ^{2}(1 / 2) \theta}\right. \\
& \left.+\frac{\cos \left(n \ln \cos ^{2}(1 / 2) \theta+K_{0}\right)}{\cos ^{2}(1 / 2) \theta}\right]\left(\frac{e^{2}}{M v^{2}}\right)
\end{aligned}
$$

The first term is the pure Coulomb scattering, the second the pure potential scattering and the last the interference term. To get the cross-section for scattering between θ and $\theta+d \theta$ multiply by $2 \pi \sin \theta d \theta$ and to obtain the cross section in the laboratory
system replace every θ by 20. The largest effect of the potential well comes at 90° in the center of mass system (45° in the laboratory) and at this angle

$$
\begin{aligned}
& \sigma\left(\frac{\pi}{2}\right)=\left(\frac{e^{2}}{M v^{2}}\right)^{2}\left\{4+4 \frac{\sin ^{2} K_{0}}{\eta^{2}}-8 \frac{\sin K_{0}}{\eta} \cos K_{0}\right\} \\
& \frac{\sigma\left(\frac{\pi}{1}\right)}{\sigma\left(\frac{\pi}{2}\right)}=1-\frac{\sin 2 K_{0}}{\eta}+\frac{\sin ^{2} K_{0}}{\eta^{2}}
\end{aligned}
$$

At a million volts collision energy η is about $1 / 6$ and it becomes smaller as the energy increasos. The effect of a small phase shift due to nuclear forces is therefore greatly amplified at these energies. Further, due to interference, the sign of K_{0} is determined.

Experiments on proton-proton scattering have been carried out with good precision by Tuve, Hafstad, Heydenburg and Herb, Kerst, Parkinson and Plain. The latter have carried the collision energy up to 2.4 Mev where the ratio of cross sections is 43 and K_{0} is 48品. At $1 \mathrm{Mev} \mathrm{K} K_{0}=33^{\circ}$. Both experimental groups accelerated protons by electrostatic, generators and scattered them in hydrogen gas making counts at several angles to the beam.

Comparison of the results obtained with those that are ex. pected from a square well can now be made. For this purpose, however, it is necessary, in general, to know both the bounded and unbounded solutions to the wave equation in the Coulomb field. These solutions are called F and G respectively. The phase shift, K_{0}, has been defined to relate to the asymptotic forms of Fo and Go for swaves which are taken to be $\pi / 2$ out of phase at
large r. At the boundary of the well the combination F_{0} cos $K_{0}+G_{0}$ sin K_{0} must fit onto the wave function, F_{i}; that applies inside the well

$$
\frac{F^{1}}{F_{1}}=\frac{F_{\gamma}+G!\tan K_{0}}{F_{0}+G_{0} \tan K_{0}}
$$

and this determines K_{0}. If we assume that the coulomb field has not affected F_{0} and G_{0} greatly we get the usual relation

$$
r_{0} \frac{\sqrt{M(E+V)}}{h} \cot \sqrt{\frac{M(E+V)}{h}} r_{0}=r_{0} \sqrt{\frac{M E}{\hbar}} \cot \left[\sqrt{\frac{M E}{K}} r_{0}+K 0\right]
$$

With $r_{0}=2.8 \times 10^{-13}, K_{0}=48^{\circ}, E=(1 / 2)(2.4 \mathrm{Mev})$ we find $V_{0}=$ 9.0 Mev Brelt and others have shown that about 0.8 Mev should be added as an average effect of the Coulomb repulsion instde the well The more exact calculation gives 11.3 Mev as the depth of the well and also shows that good agreoment with results at all energies is obtalned. The rough method used would be applicable only at energies very high compared with the Coulomb ropulsion at $r_{0}=e^{2} / \mathrm{mc}^{2}$

Using the exact wave functions a search for the best value of ro has been made by Breit et al and the decision reached that $r_{0}=\theta^{2} / \mathrm{mc}^{2}$ is the most acceptable ($a=1$). A value of $a=$. 75 gives a noticeably inferior fit as also does a $=1425$ The depth of well pertaining to $a=1$ is 11.3 Mev in good agreement with the most careful estimates of the depth of the singlet deutoron well of the same width, 11.6 Mev ,

LA 24 (28)
December 30, 1943
IECTURE SERIES ON NUCLEAR PHYSICS

Fourth Series: Two Body Problem Lecturer: C. L. Critchfield IECTURE XXVIII: THREE BODY PROBLEMS

A second method of determining the range of nuclear forces is obtained in estimating the binding energy of the nuclei containing three particies, H^{3} and He^{3}. The binding energles of these nuclei are approximately equal; the difference being caused by the electro static ropulsion of the two protons in He^{3}. Since an attractive force between two protons has been demonstrated in scattoring experiments, $1 t$ follows from the equality of binding in H^{3} and He^{3} that the same attractive force exists between neutrons. Attractive forces between all particles in these nuclel and in He^{4} are also found necessary in getting agreement between observation and the estimates.

The method of calculating binding energies that we shall apply is to reduce the three-body problem to an "equivalent two body problem" by certain assumptions and by averaging over the third particle. The method was first used in this connection by Feenberg. Consider the nucleus H^{3} which has a binding energy $16.3 \mathrm{mc}^{2}$. Assume that the wave function that describes any two particies in H^{3} is the same as for the deuteron. In order to express the deuteron wave function as a single algebraic function the form of the two particle function will be assumed to be

$$
f(r)=e^{-(1 / 2)\left(\nu r^{2}\right)}
$$

where $(2 / \downarrow)^{1 / 2}$ is essentially the radius of the wave of the deu-
teron. Further assume that the wave function for all three particles is a symmetric product of three such deuteron functions in the three separations r_{12}, r_{13} and r_{23} :

$$
\psi=f\left(r_{1 R}\right) f\left(r_{13}\right) f\left(r_{23}\right)
$$

The potential energy of each particle will depend upon the position of each of the other two; but an effective two body potential can be obtained by averaging over the density function of one of the particies. The potential energy may be written (V is the deuteron potential):

$$
V=\frac{\int \psi\left[V\left(r_{12}\right)+V\left(r_{13}\right)+V\left(r_{23}\right)\right] V d \tau_{12} d \tau_{3}}{\int \psi^{2} d \tau 12^{d \tau_{3}}}=\frac{\int \psi V_{12} \psi d \tau_{12} d \tau_{3}}{\int \psi^{2} d \tau_{12} d \tau_{3}}
$$

Carrying out the integrel over diz (the volume eloment of particle 3) we get

$$
\overline{\mathrm{V}}=3 \int_{e^{-(3 / 2)\left(v_{12}^{2}\right)} V\left(r_{12}\right) d \tau_{12}}^{\int_{\theta}^{-(3 / 2)\left(v r_{12}^{2}\right)_{d}} \tau_{12}}
$$

Thus if we set $r^{2}=(3 / 2)\left(r_{12}^{2}\right)$ the potential between any two particles is the same as in the deuteron except that the range of forces is $\sqrt{3 / 2}$ larger. The total potential is three times that between any two particles. In a similar calculation the kinetic energy may be averaged and the result is that the total kinetic energy is three times that in the deuteron.

We shall apply the results obtained above to detemining the equivalent solution with a "square" potential well. Let T be the binding energy of H^{3}; the wave equation for the two body
problem "equivalent" to H^{3} is then
$3 \frac{\hbar^{2}}{M} \frac{d^{2} u}{d r}-\left[3 V\left(\sqrt{\frac{3}{2}} a\right)+\epsilon_{T}\right] u=0$
The function $V\left(\sqrt{\frac{3}{2}}\right.$ a $)$ is equal to a constant, $-V_{T}$, for $r<\sqrt{\frac{3}{2}}$ a and vanishes for $r>\sqrt{\frac{3}{2}}$ a. In the three particle nuclei V_{T} is a mixture of singlet and triplet potentials. The two neutrons is H^{3} are certainly in a singlet state and if the spin of the proton Is parallel to one of the neutron spins it forms the triplet with that neutron and half triplet and half singlet with the other. The expected relation between V_{T} and a can be determined from the deuteron calculations and is a simple average of singlet and triplet relations

$$
\begin{equation*}
V_{T}=\frac{25.3}{a}+\frac{6.6}{a}+1.2 \tag{2}
\end{equation*}
$$

This average is based on the assumption that the effect of the D wave in H^{3} is the same between pairs of particles in the triplet state as in the deuteron.

The other relation between V_{T} and a may be obtained from the equivalent two body equation for H^{3}. That equation may be made formally the same as for the triplet deuteron by substitubing

$$
r=\lambda_{r^{\prime}}
$$

and choosing λ^{2} such that

$$
\lambda^{2} \epsilon_{T}=\epsilon_{D}
$$

where ϵ_{D} is the binding energy of the triplet deuteron. Then the relation between $\lambda^{2} V_{T}$ and $\sqrt{\frac{3}{2}} \frac{a}{\lambda}$ is the same as between V_{0} and
a for the triplet deuteron 1 .e.

$$
\lambda^{2} V_{T}+\frac{25 \lambda^{2}}{\frac{3}{2} a^{2}}+\frac{13.2 \lambda}{\sqrt{\frac{3}{2}} a}+2.4
$$

The appropriate value of λ^{2} is 0.78 and

$$
V_{T}=\frac{16.9}{2}+\frac{12.2}{2} \quad 3.2 \quad\left(H^{3}\right)
$$

This, combined with the relation obtained from the deuteron (H^{2}) has the solution

$$
a=1.08
$$

for equal depths of well, V_{T}. The value for the range of forces thus obtained is higher than that indicated by proton-proton scattering but only by 8 percent. The method is very rough, of course, and the result obtained is satisfactory. If a neutron-noutron force had not been postulated the agreoment would be unacceptable. There is a difference In binding between He^{3} and H^{3} of about 76 Mov that should be due to the coulomb repulsion of the protons. We may estimate the expected repulsion as follows:

$$
\Delta E=\frac{\int_{0}^{\infty-(3 / 2)\left(\nu / r^{2}\right)}\left(e^{2} / r\right)\left(r^{2} d r\right)}{\int_{0}^{\infty}-(3 / 2)\left(2 / r^{2}\right)} r^{2} d r \quad e^{2}\left(\frac{6 \nu}{\pi}\right) \quad 1 / 2
$$

Now $L / 2$ represents the reciprocal square of the extent of the wave function and may be taken approximetely equal to $M \in / h^{2}=0.43$ in units of $\mathrm{m}^{2} \mathrm{c}^{4} / 4$. This gives 0.65 Mev for the calculated Coulomb energy in satisfactory agreoment with the experimental value considering the approximations made.

Similar throe and four body ooloulations have been made
by the variational method with substantially the same result for a and a correct accounting of the binding energies of $\mathrm{H}^{3}, \mathrm{He}^{3}$ and He^{4}.

There 1s another type of three-body problem of fundamentel interest to the theory of the deuteron. This 18 the scatterIng of neutrons by hyarogen molecules. The theory has been worked out by Schwinger and Teller and has shown that the scattering eross section of the molecule is extromely sensitive to whether the singlet stato of the douteron is real or "virtual". Experiments on scattering of liquid-air noutrons have been interpreted by the theory to prove conclusively that the singlet state is virtual, 1.0., there is no bound singlot state.

The great decisivenoss of the exporiment comos about because of an accidental near cancellation of terms in the oalculation. Details of tho calculations will not be given here but the princlpal feature of them is roadily described. The calculated cross section for neutron-proton scattering due to the triplet well alono $1 \mathrm{~s} 3.50 \times 10^{-24} \mathrm{~cm}^{2}$ at low energy whereas the observed valuels $13 \times 10^{-24} \mathrm{~cm}^{2}$. From Wigner's hypothesis the singlet scattering must have cross section $42.5 \times 10^{24} \mathrm{~cm}^{2}$. If σ_{1} is the triplet and O the singlet cross section

$$
\sigma_{0} \quad 11.8 \sigma_{2}
$$

Scattering from the hydrogen molecule will show interference between spherical weves coming from the two nuclei if the wavo length of the neutron is long compared with the internuclear separation. At room tomperature the wave length is of the same order of magnitude as the separation. Calculation of the oross
soction for neutrons of this energy and below whll then tnvolve the square of a quantity ropresenting the sum of offects from the two protons. If both protons scetter 1 , say, the tnfplet state the phases have the same sign and Interfere constmactuoly but if one scetters in the triplet and one in the singlet the waves will ree Inforce only if the singlet level is real. If the olnglet lovel is virtual the phase shlft will be of opposite slgn to that from the triplet ond the waves will intorfere destructively.

A somewhat moro quantitative anelysis may be made by introducing the phose shifts δ_{1} and δ_{0} for very slow neutrons leadIng to the triplet and singlet cross sections respectivoly.

$$
\sigma_{1} \frac{4 \pi}{k^{2}} \sin ^{2} \delta_{1} \quad \sigma_{0}=\frac{4 \pi}{k^{2}} \sin ^{2} \delta_{0} \sin \delta_{0}= \pm 3 \cdot 43 \sin \delta_{1}
$$

The equations for σ_{1} and σ_{0} can be combined into one equation by use of the scalar product of noutron and proton spin operators $O_{N} \sigma_{p}$. This product has the value +1 for triplet state and -3 for a singlet atato.

$$
\sigma=\frac{\pi}{4} \frac{1}{k} 2\left[3 \sin \delta_{1}+\sin \theta_{0}+\left(\sin \theta_{1}-\sin \theta_{0}\right) \sigma_{N} \sigma_{\mathrm{P}}{ }^{2}\right.
$$

The cross section for scattering by two protons, 1 and 2 fompng a molecule 1 s proportional to the square of the sum of the oxpressions in tho bracket for each proton provided thet the protons are In the same state of symetry after scattering as before and provided the wave length of the neutron is very long. The symmetry of the proton state remains unchanged uniess there is a conversion from orthohydrogen to parahydrogen or vice versa Thus the cross section for ortho-ortho or para-para seattering is proportional to

$$
\left.\sigma \sim\left[3 \sin \delta_{1}+\sin \delta_{0}+\left(\sin \delta_{1}-\sin \theta_{0}\right) \vec{\sigma}_{N} \frac{\sigma_{1}+\sigma_{2}}{2}\right]\right]^{2}
$$

the square should be averaged over all neutron spins.

$$
\sigma \sim\left(3 \sin \delta_{1}+\sin \delta_{0}\right)^{2}+\left(\sin \theta_{1}-\sin \theta_{0} \frac{3+\sigma_{0}}{2} \sigma_{2}\right.
$$

For para-para scattering

$$
\overrightarrow{\sigma_{1}} \cdot \overrightarrow{\sigma_{2}}=-3
$$

and

$$
\sigma_{p p} \sim\left(3 \sin \delta_{1}+\sin \delta_{0}\right)^{2}
$$

which amounts to 41 if the singlet state is stable, 1.0., δ_{0} and O_{1} have the some sign, and only to 0.18 if the singlet is un stable. There is thus a factor of over 200 in cross section depending upon the stability of the singlet state and the large size of the factor is due to the fact that sin 6 1 s so nearly oqual to -3 times sin δ_{1}. For ortho-ortho scattering $\sigma_{1} \cdot \vec{\sigma}_{2}=+1$

$$
\sigma_{00} \sim\left(3 \sin \delta_{1}+\sin \delta_{0}\right)^{2}+2\left(\sin \delta_{1}-\sin \delta_{0}\right)^{2}
$$

The right side is 53 for the stable singlet and 20 for unstable singlet.

The experimental procedure is to compare the scattering of para-hydrogen with that of orthohydrogen (or rather the usual mixturol for 11quid air neutrons. The interpretation is subject to the further complication, however, that the neutrons may convert one kind of hydrogen into the other. In this case the wave function of the final molecule has one sign if the spin of one proton is changed and the opposite sign if the spin of the other is changed. The interference is then destructive and the cross section proportional to

$$
\sigma_{c o n v} \sim\left(\sin \delta_{1}-\sin \delta_{0}\right)^{2}
$$

Of course the conversion is accompanied by a change in rotational state because of the statistics. Schwinger and Teller have shown that $\sigma_{c o n v} 1 s$ of the same order of megnitude as σ_{00}, so that only when the parahydrogen is mostly in the ground state, $J=0$, and whon the noutrons have sufficiently low energy will its cross section be so extremely smal for the case of on unstable singlet douteron. The onergy requirod to raise paramolocule to ortho stato is 023 eloctron volts, hence llquid air neutrons (.012ev) w111 be unable to convert para to ortho hydrogen. The result of the experiment is that the scattering cross section of ortho- H_{2} is much larger than that of para hydrogen Thia proves conclusively that the singlet deuteron is not stable.

Exactily the same kind of considerations have beon made by Schwinger for the possibility that the neutron has spin ($3 / 2$) hinm stead of (1/2) . The level of the deuteron that lies near zoro energy would then be quintet. In this caso however, the fortuitous cancellation of terms does not occur and all cross sections In molecular hydrogen are of the some order of megnitude. Thus the experiments prove not only thet the singlet state of the deuteron 1 unstable but also that the neutron spin is (1/2) h .

$$
\mathrm{LA} 24 \quad(29 \& 30)
$$

Januery 6, 1944

LECTURE SERIES ON NUCIEAR PHYSICS

Fourth Serles: Two Body Problem Lecturer: C.L. Critehfield LECTURE XXIX \& XXX: INTERACTION OF NEUTRON AND PROTON WITH FIELDS

Neutrons and protons interact with the fiolds that have been established by classical physics, namely, the gravitational
fields and the electromagnetic flolds. Gravitational pheriomena are of no consequence in the description of nuclear processes. The averace gravitational attraction in the deuteron amounts to only 4×10^{-30} eloctron volt. Electromagnetic phenomeng, on the other hand, are very impontant. Radiative capture, emission of gamma rays followine transmutation and photoolectric dissociation are evidences of the response of nuelel to electric and magnetic fiolds The neutron is affected only through its magnetic moment and the proton through both its electric charge and lts magnetic moment. In adaltion to those well established flelds there are two, still incomplote, thoorles of flelds that influence tho nuclear particles. One of these is based upon an Interaction botween neutron or proton with the field of electron end neutrino waves. The purpose of this theory is to systomatize observations on the beta-activity of nucle1. The other theory postulates an interaction betweon the nuclear particle and the flold of mosons, partieles discovered in cosmic radiation having a mass about 200 times that of the eloctron. The purpose of this theory is to account for nucloar forces and for the magnetic moments of neutron and proton. In certaln forms of the latter theory the nature of beta ectivity 1 s circunseribed to somo extent. Some fundamental examples of the applications that are made of the three important fleld theories will be considered.

Electromagnet10 F101ds

It has been pointed out in the leetures on the neutron that the best detemanation of the mess of the neutron is a result of the photodisintegration of the deutoron. Also, accurate
experimentation on photodisintegration, espocially on the angular distribution of the separating pantioles, will be valuable in understanding dotal1s of the structure of the light nucle1. The thoory of the interaction betwoen the deuteron and electromagnetic radiation 1 s consequently of constarable importence and a brief skotch of 1 ts application w111 bo glvon.

The offect of an olectromaenetic fiold on nuclear system can be treatod as small perturbation of the onergy of the system. In genoral, the flelds act on both the electric and magnetic moments of the nucleus. Wo shall consicer the oloctric interaction with the deutoron first.

The perturbation enerey $1 s$ oqual to the product of the electrie fleld strength End the olectric dipolemomonto(r/a) in the deuteron of course, the average value of the latter vanishes but the oloctrio dipolo 1 s operativo in ouusing transitions from the, essentlally spherically symetric, ground state of the douteron, to P-states which consorve tho energy givon by an incident photon and reprosonting the ojocted particles. The P-states are unbound, and in fact vomy ifttle affected by tho nucloer forces because of the vanishing intensity of the wave at small separations of the particlos. If wo nomalize the P-wave in a sphere of radus R whfeh 1s large compared with the wave length of the ejocted part1eles the number of proceseos por sceond is glven by the well known result of perturbetion theory:

$$
w=(2 \pi / \hbar)\left|\int_{p}(e r / 2 \cdot E) \psi_{p} a \tau\right|_{p}^{2}
$$

wherep 1 is the numbor of P-states por unftenergy at the onergy of
the elected particles, ψ_{s} is the wave function of the ground state of the deuteron and ψ_{p} the p-waye. For simplicity we shall assume ψ_{e} in the form

$$
(1 / r) \bullet-(\sqrt{M \epsilon / \hbar}) n
$$

normalized in a very large sphere.

$$
\psi_{\mathrm{s}}=(\sqrt{M \& / Q \pi})^{\frac{1}{2}}\left[(2 / r)_{\theta}-(\sqrt{M \epsilon / h}) r\right]
$$

In the case of the P-wave the radius of the sphere appears explici$t 15$

$$
\Psi=\frac{1}{2 n R} \quad \frac{1}{r}\left(\frac{\sin k r}{k r}-\cos k r\right) \quad(\sqrt{3} \cos \theta)
$$

Only the P-wave that represents the direction of polarization will contribute to the integral in w.

The density of states per unit energy is obtained in the following way Quantization in sphere of radius R allows only those values of k for which, ossontfally, cos $k R=0$. since $k=P / h$ there are thus $k / \pi h$ states per unit momentum and

$$
\mathrm{P}_{\mathrm{p}}=(R / \pi \hbar)(\alpha p / d E)=R / \pi \hbar v
$$

per unit energy; v is the relative velocity of the separating partickles.

It $1 s$ possible to divide w into the factors

$$
\mathrm{w}=2 \pi / h_{\mathrm{L}} / M_{\mathrm{E}}{ }^{2} \cdot \mathrm{~L}_{\mathrm{p}}^{2} \cdot \mathrm{P}_{\mathrm{p}}
$$

so that ${ }^{2}$ represents the density of photons of polarization p at tho nucleus and M_{E} is the nuclear matrix element". This can be done since the wave length of the radiation is very large compared with nuclear dimension and thus A^{2} is sensibly a constant factor in the integral. The Incident current oxprossed as number of photons of both polarizations per second per square centimeter

15

$$
I=c\left(\mathrm{E}^{2}+\mathrm{H}^{2} / 8 \pi h \nu\right)=\mathrm{cE} \mathrm{E}^{2} / 4 \pi n \nu
$$

and the cross section for photo electric disintegration only one polarization is effective)

$$
\sigma_{E}=\frac{1}{2 w / I}=\left(8 \pi^{3} v / c\right)\left|M_{E}\right|^{2} P_{P}
$$

If we had normalized the neutron-proton P-wave functions to unit energy the factor P_{P} would have been unity.

Calculation of M_{g} is straightforward. Consider the dipole moment in the direction, $\theta=0$,

$$
\begin{gathered}
M_{E}=\int \psi_{s}(\theta r / 2 \cos \theta) \psi_{p} d \tau \\
M_{E}=\left(2 \xi k^{2}\right) /\left[\left(M \epsilon / \hbar^{2}\right)+k^{2}\right]^{2}\left[(\sqrt{M \epsilon}) /\left(3 \hbar_{R}\right)\right]^{\frac{2}{2}}
\end{gathered}
$$

and with

$$
v=2 \mathrm{p} / \mathrm{M}=2 \mathrm{k} \hbar / \mathrm{M}
$$

$$
\sigma_{E}=\left(16 \pi^{2} / 3\right)(\mu / c)\left(\epsilon^{2} M / \hbar^{2}\right) \frac{\left(\sqrt{M \epsilon / \hbar) k^{3}}\right.}{\left[\left(M \epsilon / \hbar^{2}\right)+k^{2}\right]^{4}}
$$

Now $h \nu=E+\epsilon=\left[\left(\hbar^{2} k^{2}\right) / M\right]+\epsilon$, where E is the kinetic energy of neutron and proton and σ, expressed as a function of E and E becomes

$$
\sigma_{E}=(8 \pi / 3)\left(\theta^{2} / K c\right)\left(\hbar^{2} / M \epsilon\right)\left(\frac{\sqrt{E / \epsilon}}{1+E / \epsilon}\right)^{3}
$$

For the $\%$-rays of Th C^{\prime}, used by Chadwick and Goldhaber, the calculated cross section $1 \mathrm{~s} 6.7 \times 10^{-28} \mathrm{~cm}^{2}$

To the cross section σ_{E} must be added the cross section due to effect of the magnetic vector, σ_{M}. The perturbing energy is then H. H, and the matrix element, M_{m}, contains not only an
integral over space coordinates but a sum over the spins. The transition 1 s from the ${ }^{3}$ s ground state to a l_{S} state of positive energy. Since there is a virtual level of the deuteron in the possdive spectrum, the ${ }^{1} S$ wave function 1 s very large at low energy and this fact makes up for the relative weakness of the magnetic moments. Assume the proton and neutron magnetic moments to be independent, then

$$
M_{m}=\left(\left.\left.{ }^{3} s\right|_{p} \sigma_{p+\mu_{n} \sigma_{n}}\right|_{s}\right) \int \psi\left(v^{3} s\right) \psi\left({ }^{1} s\right) d \tau
$$

The spin function for the singlet may bo written symbolically

$$
1_{S}=(1 / \sqrt{2})(\mathrm{p} \mid n \downarrow-\mathrm{p} n \mathrm{n})
$$

and $\Phi_{p} 1_{\mathrm{S}}=-\Pi_{n} 1_{s}$. Furthermore, the triplet spin state is require to cancel the angular momentum of the 11 ht quantum and therefore only one of throe possible triplet states contributes. If, for example, this one state is

$$
3_{S}=(1 / \sqrt{2})(p 1 n 4+p \sqrt{n})
$$

the value of ($\left.{ }^{3}\left|\mu_{p} \Phi+\mu_{n} \sigma_{n}\right|{ }^{1} s\right)$ is seen at once to be $\mu_{\mathrm{p}}-\mu_{\mathrm{n}}$. In the space-1ntegral for M_{m} we uso $\|\left(3_{\mathrm{s}}\right)=\psi_{\mathrm{s}}$ as above, but

$$
\left.\psi^{1} s\right)=\frac{\sin (x r+50)}{r \sqrt{2 \pi R}}
$$

where 6_{0} ss the phase shift caused by the potential well

$$
+\left(M \epsilon^{1} / h+k^{2}\right)^{\frac{1}{3}}\left(M \epsilon / \hbar^{2}+k^{2}\right)^{\frac{1}{2}}
$$

$$
\begin{aligned}
& \cot \delta_{0}-\sqrt{M^{2} / \hbar k}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{M_{m}}{M_{E}}+\frac{\mu_{0}-\mu_{n}}{2 \sigma \sqrt{3}} \frac{(\sqrt{\epsilon}+\sqrt{\epsilon})}{(E+\epsilon)} \quad(E+\epsilon) \frac{M}{\hbar^{2}}
\end{aligned}
$$

Now, only one of the three possible orientations of a deuteron is capable of absorbing the 11 ght quantum. The ratio of cross sectons is then
$\sigma_{M} / \sigma_{E}=1 / 3\left(M_{m} M_{E}\right)^{2}=\left(\mu_{\mathrm{p}} \mu_{n}\right)^{2} / 4\left[(\sqrt{\epsilon}+\sqrt{\epsilon})^{2}(E+e)^{2}\right]\left[\left(E+\epsilon^{1}\right)_{c^{2}}\right]$ where μ_{p} and μ_{n} are now measured in nuclear magnetons, $\mu_{p} \mu_{n}+4+2$. For Thc ${ }^{2}$-rays $E=0.46 \mathrm{MV}$, and $\epsilon \in 0.21 \mathrm{MV}, \sigma_{\mathrm{M}} / \sigma_{\mathrm{E}}=.51$. For this energy γ ray (2.62 MV). Therefore, the cross sections are comparable In magnitude At higher energy the electric effect should predominate and at lower energy the magnetic effect 1 s stronger: The angular distribution from the two effects differs also. A spherical wave is created by the magnetic interaction but the electric Interaction sends the neutron and proton out in P waves that have nodal plane parallel to the direction of redeton. The angular distribution $1 s$ therefore

$$
\sigma(\sigma)=3 / 2 \sin ^{2} \sigma \sigma_{E}+\sigma_{M}
$$

and the ratio of neutron or proton intensities at $\sigma=0$ and $\sigma=00^{\circ}$ to the 7 ray beam 1 s

$$
\sigma(0) / \sigma^{\prime}\left(90^{0}\right)=\sigma_{M} /\left(\sigma_{M}+3 / 2 \sigma_{E}\right)=.25
$$

Having calculated the cross section $\sigma_{A B}$ for a process In which the two particle system A is transformed Into another, B, It is a simple matter to obtain the cross section $\sigma_{B A}$ of the reverse process. Let $\mathrm{E}_{A}, \mathrm{~g}_{\mathrm{B}}$ be the statistical weights of systems A and B respectively and $\lambda_{A B}$, $\lambda_{B A}$ the wave lengths of the incldent particles in processes $A B$ and $B A$. It cen be shown quite generally that

$$
\sigma_{B A} / \sigma_{A B}=\left(g_{A} / g_{B}\right)\left(\lambda^{2} / \lambda_{A B}^{2}\right)
$$

The reverse of photo disintegration is simple radiative capture of neutron by proton, system A is composed of one photon and the stable deuteron; the photon is capable of two polarizations and the douteron of three, hence $g_{A}=6$. System B contalns one neutron and one proton each of two possible polarizations so B_{B} - 4. The cross soction for capture is then

$$
\sigma_{c}=3 / 2\left(2 \pi / / \mathrm{kc}^{2} \quad\left(\sigma_{\mathrm{E}}+\sigma_{\mathrm{M}}\right)\right.
$$

The electric and magnetic effects have different dependencies on the energy of the noutron-proton system. At high energy the magnetic effect is negligiblo and approximetoly

$$
\sigma_{c} \approx 3.7 \times 10^{-29} \sqrt{\epsilon / \mathrm{E}} \mathrm{~cm}^{2} \quad \mathrm{E} \gg \in
$$

At very low energy, however, the magnetic offect predominated and

$$
\sigma_{c}=1.4 \times 10^{-29} \sqrt{\epsilon / E} \quad \quad E<E
$$

For neutron at room temperature, $1 / 40$ e, $v_{,}, E=1 / 80$ e.v.

$$
\sigma_{c}=.18 \times 10^{-24} \mathrm{om}^{2}
$$

FERMIS THEORY OF BETA-RADIATION
When the neutron was discovered the way was opened for the development of a field theory of beta radiation. This was done by Fermi in analogy to electromagnotic theory. The fundamontal assumptions are:
(1) Neutron and proton are two states of tho samo particle (nucloon).
(2) Energy, spin and statistics are conserved in bota radiation by the introduction of the Paull neutrino.
(3) The rest mass of the neutrino is zero (or nearly
zero) and its spin is att.
(4) Neutron and proton interact with the combined fields of electrons and neutrinos in such a way that on electron and a neutrino are radiated when neutron changes to proton and a positron and a neutrino are radiated when proton changes to neutron.
(5) Electron and neutrino share the available energy in all possible proportions.

In analogy to the interaction between charged particles and light quanta, the number of beta processes per second is

$$
w=(2 \pi / h) g^{2}|M|{ }^{2} \psi^{2} \psi^{2} / \theta \rho
$$

where M is the matrix element calculated from waves of neutron and proton. The interaction constant $\&$ is analogous to e In electric theory. $\not \mathscr{H}$ and $\not / 2$ are the amplitudes of electron and neutrino waves at the nucleus, ψ^{2} e y^{2} takes the place of E^{2} in the electranagnetic case. P and P are the numbers of available electron and neutrino states per unit energy.

The strongest beta activities will be those omitting the electron and neutrino in s-waves since y^{2} o and $\not y^{2}$ will then be largest. For light nuclel these S-waves are not greatly affected by the Coulomb field if the electron has several million volts energy and we are justified in approximating \mathscr{Y}_{0} as

$$
W_{\theta}=\frac{(\sin)(\mathrm{p} n / h)}{n \sqrt{2 \pi R}}
$$

where \mathscr{F}_{0} is normalized in a shore of radius $R_{\text {. Let the total }}$ energy liberated by the nucleus during radiation be W and let the energy of the electron be E. Then the wave function for the nettorino is

$$
\psi_{r}=\frac{\sin (W-E) p / \hbar c}{r \sqrt{2 \pi R}}
$$

and, as in tho case of the photoelectric disintegration of tho deuteron

$$
\begin{array}{r}
\text { at } x=0 \not P_{e}=R / T \hbar V=R / \hbar / A \hbar c^{2} p \quad P_{2}=R / T h c \\
W=\left(\mathrm{g}^{2} /\left.M\right|^{2} / R \pi^{3} c^{5} \hbar^{7}\right) p E(W-E)^{2}
\end{array}
$$

The shape of the electron spectrum is thus determined. Experimentally the number per unit energy (or unit momentum) is measured, divided by pE or its equivalent in the Coulomb field and the square root of the resulting number plotted against .E. In the carefully done work with nuclei that have only one beta activity the plot is a good straight line, the intercept of which W. The theory is therefor substantiated by the experiments.

If the nuclear charge is larger than, say 20 , or if the electron energy is particularly low the sine wave is not a good approximation for the electron wave. A more exact value of ${ }_{e}^{2}$ at $r=0$ is

$$
\begin{gathered}
\psi_{e}^{2}=\left(2 \pi \eta / e^{2 \pi \eta-1)\left(p^{2} / \hbar^{2}\right)(1 / \sqrt{2 \pi R)}}\right. \\
\eta=2 e^{2} / \hbar v
\end{gathered}
$$

Z is plus the charge number of the residual nucleus if a positron is emitted and minus the charge number for electron emission.

The probability of omission of an electron with energy
between E and $E+d E$ is

$$
P(E) d E=\frac{e^{2}}{2 \pi^{3} c^{5} \hbar^{7}}|M|^{2} \frac{2 \pi \eta}{e^{2 \pi} \eta-1} P E(W-E)^{2} d E
$$

The total probability of emission of electron and neuttrine per second is given by the Integral of $P(E) d E$ over electron energies from $E=m c^{2}$ to $E=W$. For $W \gg m^{2}$ this integral is closely equal to

The decay constant, λ, is proportional to the fifth power of the total energy released by the transition. Measurements of and the half lives of the light radioactive elements makes possible a determination of the "Fermi constant", B.

There is a class of positron emitters that is particulardy well suited for determining g. This class comprises the lIght radioactive nuclei containing one more proton than neutron. The extra proton turns into a neutron with the emission of a posttron and, since the nuclear forces are evidently the same between all pairs of particles, the wave function of the neutron in the final nucleus should be very nearly the same as the wave function of the initial proton. In this one $|M|^{2}=1$. A table of these nuclei, their half lives and energies released are given in Table I on the following page. In some instances two energies are given representing two possible final states. The lIfe time is determined by tho transition releasing the most energy. If the translton goes to the excited state the nucleus subsequent ry emits a gamma ray. An average value of $\lambda\left(m c^{2} / w\right)^{5}$ is 4.61×10^{-6}. If we measure g in units of $\left(e^{3} / \mathrm{Mc}^{2}\right)^{2}$ we find

$$
g=46\left(e^{3} M c^{2}\right)^{2}
$$

We have assumed that olectron and neutrino are emitted Without onbital angular momentum. The maximum amount of spin that can be taken by the emitted particles 1 s, therofore, h. In order that the spin of the nuclous bo changed it would be nocessary that the coupling betwoen neutron (or proton) and the field contaln the spin operator, fust as in the case of magnetic dipole capture of neutron py protone Femils oniginal theomy did not contaln such a spln operator and the nuclear spin could not change in "allowed" trensttion. In order to make a transtion from one spin to another the neutrino or electron or both had to be omftted with orbital momentum, the amplitudes of wavos of higher angular monentum are much smeller at the nuclear radius than the amplitude of the

S-wave and such transitions are temed "forbidden". The half-1ife of a forbidden transition is therefore much longer than that of an allowed transition of the same energy release.

Certain nuclei produce allowed transitions although it appears certain that the nuclear spin changes by \neq. This is particulanly true of $H e^{6}$ which must have spin O but docays at an "al1owed rate to L^{6} with spinh. In Fermi's theory such a transition would be forbidden. To account for transitions with change of spln ± 1, Gemow and Teller postulated a spin dependent interaction with the eloctron-neutrino fiold.

The calculations made thus far apply only to allowed transitions in light nucloi. To extend them to heavy nuclel and to forbidden transitions more exact account must be taken of the wave functions for relativistic motion in a Coulomb field and there are several interesting features of the solution that are emphasized in beta-decay theory. FIEID THEORIES OF NUCIEAR FORCES

The success of Fermf!s thoory of beta decay prompted an attempt to explain the forces between nuclear particles by the same interaction. Thus the electron-neutrino field should play the same role in the attraction between nuclear particles as the electromagnetic field plays in the forces between charged particles At the same time the anomalous character of the magnetic moments of neutron and proton might also be explained by the interaction with this field (Wick). The attempt was not successful, however, for two very good reasons, elther of which is sufficient. First, the forces calculated are much too weak to account for the ob-
served strength and range of nuclear forces; secondy, the theory gives attraction, in first approximation, only between neutron and proton, The forces between IIke particles appear in second approximation and are repulsive.

Two lines of endeavor have been pursued in trying to construct a field theory of nuclear forces. One generelized the beta intoraction. This was first done by Gamow and Teller, and by Wentzel, who postulated an interaction with pure electron fields, so that neutron and proton would be able to create an electronpositron pair as well as an electron-neutrino pair. This same type of "pair emission" forces was later extended to meson pairs (Marshak) on the assumption that the meson has spin 音象. On account of the flexibility in introducing new fields these theories are able to account for the nuclear forces. There are several objectionable features of the results, however. In the electron positron pair theory, for excmple, special forms of the states into which the electrons are omftted heve to be assumed in order to avoid scattering of slow neutrons by the atomic electrons. In the meson-pair theory the calculated cross section for scattoring of cosmio ray mesons by nuclei is higher than that observod except for very weak interaction forces (and a rather long range for the forces). There is a general objection to the meson pair theory that observations show about 30% more positive mesons at sea level than negative ones. If they were created in pairs the numbor might be expected to bo more nearly equal, Pending further experimental evidence of the spin of the meson, however, the possibility of a mesonmpair field theory cannot be ruled out.

The othor class of attempts to describo nuclear forces by a field theory is typified by more direct generalizations of electromagnetic theory. The first thoory of this class was presented by Yukawa, in 1935; before the meson was discovered. Yukaw found that the range and strength of nuclear forces could be understood if the nuclear particles emfted "heavy quanta" havIng a finite rest mass of about 200 times the electron rest mass. This quantum was conceived as having Bose-statistics; the same as a light quantum, but for simplicity the spin was assumed to be zero. Furthormore the heavy quantum could have one unit of electric charge positive or negative and Yukawa suggested that the heavy quantum could disintegrate into electron and neutrino giving beta radiation.

The discovery of the real meson, of about the same mass, by Neddermeyer and Anderson stimulated interest in Yukawa's theory. Then it was proven that charged quanta of zero spin gave repulsion between neutron and proton in the ${ }^{3}$ deuteron. To correct this obvious defect the spin of the quantum was assumed to be unity. The free space wave equations of the meson of spin one are therefore, very similar to those of a light quantum, 1.e. Maxwell's equations. Thus there will be the vector field quantities E and H and potentials for these fioldsyand A. The inclusion of a finite rest mass; however, introduces a characteristic longth which we shall denote by $1 / K$ where

$$
\mathrm{K} \equiv \mu \mathrm{c} / \mathrm{h} \quad 1 / \mathrm{K}=2.18 \times 10^{-13} \mathrm{~cm} . \text { for } \mu=177 \mathrm{~m}
$$

This length may be used to generalize Maxwell's equations for free space to

$$
\begin{aligned}
& \text { divH=0 } \quad d \Delta E+K 2 Q=0 \\
& \text { curd } E+d H / c \partial t=0 \\
& \text { ounce } H-\partial E / 0 \partial t+K^{2} A=0
\end{aligned}
$$

with the usual relations

$$
\begin{aligned}
& E=-g r a d \quad \varphi-2 A / c d t \\
& H=\operatorname{cur} A \\
& \text { dy A-cdp/odteo }
\end{aligned}
$$

The condition governing the generalization 1 s, of course, that the form of the equations remain invariant to proper Lorentz transformotions and reflections and that charge be conserved. The equatons for the potentials are then

$$
\begin{aligned}
& \nabla^{2} \varphi-\partial^{2} \psi / c^{2} \partial t^{2}-R^{2} \varphi=0 \\
& \nabla^{2} A-\partial^{2} A / c^{2} \partial t^{2}-R^{2} A=0
\end{aligned}
$$

The equations may then 0 e further modified to represent the effect of nucleons on the fleta. In general we may introduce a scalar quantity analogous to electric density, a vector "current density", end a vector magnetic moment". Since the nucleons can be treated unrelativistioally in good approximation wo shell conslider only the effective charge density, p, and the effective magnoetic moment, M. Now p s scalar and 1 Is an axial vector, hence we may write

$$
\begin{aligned}
& \nabla^{2} \phi-\frac{\partial^{2} \phi}{\partial^{2} t}-K^{2} \phi=4 T p \\
& \nabla^{2} A-\frac{\partial^{2} A}{\partial^{2} t^{2}}-K^{2} A-4 \pi / R \text { curt } M
\end{aligned}
$$

Time independent solutions for \emptyset end A in the absence of nucleons, and having spherical symmetry are proportional to ($1 / \mathrm{r}) \mathrm{e}^{-\mathrm{kr}}$. Time independent solutions wi p and M are therefore

$$
\begin{aligned}
& \phi(r)=\int \frac{p t^{2}}{|r-r|} \quad-K|r-r|^{1} \\
& A(I)=-(1 / K) \int d r^{1} \frac{\left.c u r l \mid r^{2}\right)}{\left|r-r^{1}\right|}-K\left|r-r^{1}\right|
\end{aligned}
$$

For the case of point charges and moments, therefore

$$
\phi(r)=(g / r) e^{-K / r} \quad \quad A(r) \quad-(f / K) \operatorname{cur} 1\left(\underline{S}\left(\theta^{-r}\right) / r\right)
$$

Where f and g are constants representing two different "nuclear charges", one for a spin independent interaction and one for a spin dependent interaction. Let the g_{2} and g_{2} be the "charge" on nucoleus 1 and 2 and let $\left(f_{2} / K\right) S_{1}$ and $\left(f_{2} / K\right) S_{2}$ be their respective moments; then if the nucleons are separated by a finite distance, r, the potential energy due to the meson field is

$$
\left.\left.V(r)-\left(g_{1} g_{2}\right) / r\right) e^{-K r}-\left(\mathrm{f}_{1} \mathrm{I}_{2} / K^{2}\right) \mathrm{S}_{2} \cdot \operatorname{curl} \operatorname{curt}_{\theta_{-K r}\left(\mathrm{~S}_{1}\right.}^{r}\right)
$$

Differentiating out the second term we obtain

$$
\begin{aligned}
& V(r)=\left[\left(g_{1} \varepsilon_{2}\right) / r\right] e^{-K r}+(2 / 3)\left[\left(f_{1} f_{2}\right) / r\right] e^{-K r}\left(\underline{s}_{1} \underline{S}_{2}\right)+\left[\left(f_{1} f_{2}\right) / r\right] \\
& \left(1 / K^{2} r^{2}\right)+(1 / K r)+(1 / 3)\left[S_{1}-\frac{S_{2}-1-\underline{E}-1}{r^{2}}\right]
\end{aligned}
$$

The first term in $V(r)$ ts the analog of electrostatic energy in the Maxwell theory. The principal difference is the occurrence of the exponential which essentially limits the potentrial to a region of radius $1 / K$. Thus $1 / \mathrm{K}$ is the "range of forces" between nucleons. Similarly, the third term is the analog of magnettie dipole interact, as is readily shown by letting f and e ap proach zero in a constant proportion. This latter process shows that there is no analog of the second term in Maxwell's theory

Three different assumptions about the true electric charge on the mesons are generally considered. These are (1) uncharged, (2) either positive or negative (+ e), (3) both charged and uncharged. The theories developed on these assumptions are referred to as neutral, charged and symmetrical theories respectively. The requirements on the g^{\prime} s and fis for neutron and prow ton are somewhat different for the different theorles.

It is necessary to account for equality of neutron-neum tron, proton-proton, and neutron-proton forces in the singlet state: In the neutral theory, which does not distinguish in any other way between neutron and proton we have $g_{1}=g_{2}$ and $f_{1}=f_{2}$ for any nucleon. Consequently the potentlal function for a singlet: $2_{1} \sigma_{2}, 3$, and the third term vantshes, is

$$
V_{\theta}(r)=\left(g^{2}-2 f^{2}\right)(e-K r / r)
$$

The potential function for the triplet state is

$$
V_{1}(r)=\left(g^{2}+2 / 3 f^{2}\right)\left(e^{-K r} / r\right)+d i p o l e-d \text { pole terme }
$$

The static, g^{2}, term is repulsive for both states and must be overcome by the $-2 f^{2}$ in the singlet and by the dipole-dipole term in the triplet. In the triplet the repulsion is increased by $2 / 3$ f 2 torm. Bethe has shown that may be taken to vanish and the singlet and triplet binding energies of the deuteron conrectiy obtained by choosing f^{2} alone. The nature of the effect of the dipolemapole term has been discussed under the theory of the deuteron In that discussion an attractive static potential was assumed, whereas the neutral theory does not permit that assumption but rather makes up for it by the q_{1}, Q_{2} term. Bethe finds agree-
ment with observations on tre deuteron with $f=3.24 \mathrm{e}$.
In the charged meson theory there are no neutral mesons postulated and the meson must have either \pm. A neutron con emit only a negative meson and turn into a proton, and a proton can emit only a positive meson turning into a neutron. This has an important effect on the natire of the forces. The neutron and the proton are considered to be two states of the same particle. The property of being one or the other is called the isotopic spin in analogy to the ordinary spin. A nucleon may have $m \tau-\frac{1}{2}$ in which case it is a proton or $m_{\tau}=\frac{1}{2}$ for a neutron. This is directly analogous to $m_{s}=-\frac{1}{2}$ and $m_{s}=\frac{1}{2}$ for the two possible magnetic quantum numbers of the nucleon or electron. The significance of the formulation of isotopic spin is evidenced in constructing many-particle wave functions in accordance with the Pauli exclusion principle. By this principle, and the assumption that neutron and proton represent two states of the same particle, the wave function of the deuteron, for example, must be antisymmetric. Thus the ${ }^{3}$ s state of deuteron, which is obviously symmetric in spin and coordinate space, must be antisymmetric in isotopic spin space; this means that if the two particles exchange charge, as in the emission and absorption of charged mesons, the complete wave function of the ${ }^{3} S$ changes sign on each exchange. On the other hand the complate wave function of the I_{S} will not change sign, since it is already antisymmetric due to the spin state and the isotopic spin function must be symmetric.

The nature of charge exchange is therefore manifested in the two particle potential function by giving a plus sign to states
with even $S+I$ and minus sign to states with odd $S+I$. The static forces are thus attractive for some states and repulsive for others, Instead of being always repulsive as in the neutral theory. Unfortunately the charged theory gives no forces between like particles, because of the impossiblifty of exchange In that case and cannot be serlousiy considered as a theory of nuclear forces. It represents the simplest case of exchange forces, however, and we shapl need the description of such forces in the symetrical theory.

The symmetrical theory postulates that both charged and uncherged mesons are represented by the field. Since the charged part contributes nothing to the forces between Ifke particles the chofoe of $g_{n}=g_{p}$ and $f_{n}=f_{p}$ for the neutral mesons is ruled out for, then the forces between unlike particles and between like particles in the I_{S} would be equal because of the neutral mesons alone. The additionel charged fleld between unlike particles would then make them unequal. The potentials in the singlet neutron-neutron and neutron-proton states are

$$
V_{0}(n, n)=\left(g_{n}^{2}-2 f_{n}^{2}\right)(e-K r / r)
$$

$V_{0}(n, p)=\left(g_{n} g_{p}-2 f_{n} f_{p}\right)+2\left(g_{n}^{1} g_{p}^{1}-2 f_{n}^{1} f_{p}^{1}\right)\left(e^{-K r} / r\right)$ where g_{n}^{1}, f_{n}, otc. apply to charged mesons. The factor 2 in the primed expression takes account of the two kinds of charged mesons. The unprimed g and fefer to neutral mesons, os before. We can equate $V_{0}(n, n), V_{0}(p, p)$ and $V_{0}(n, p)$ by taking

$$
\begin{array}{ll}
g_{n}=-g_{p} & g_{n}^{1} g_{p}^{1}=g_{n}^{2}=g_{p}^{2} \\
f_{n}=-f_{p} & f_{n}^{1} f_{p}^{1} f_{n}^{2}-f_{p}^{2}
\end{array}
$$

which has the symmetrical solution all \mid are equal and all $|f|$ are equal. Only the phases of these numbers may differ. The relative merits of the neutral and symmetrical theories have been determined by Bethe to whom this semi-classical description of nuclear fields is also due. Bethe finds that the neutral theory with $g=0$ and $f=3.240$ can account for the two body problems satisfactorily. There is one artifice necessary, however, and this arises because of the divergence of the dipoledipole forces at $r=0$. As the wave function of a particle is concentrated in a region of radius the minimum kinetic energy is of the order $K^{2} / 2 m r^{2}$. The average dipole-dipole potential, on the other hand, is proportional to $1 / r^{3}$. This shows that the smaller the radius of the wave function the lower the energy and conequentiy there is no finite state of lowest energy. To remedy this It is customary to assume that the $1 / r^{3}$ law of attraction ceases at a certain "cut off" radius. In the neutral theory Bethe finds It necessary to cut off at 0.32 the range of force (.32/K) if it Is assumed that the potential remains constant at smaller r and equal to the value at cut off. The theory then gives the correct quadrupole moment and also the correct S-states and S-scettering.

The same method applied to the symmetrical theory leads to a cut off at (1.3) $(1 / K)$ and to a quadmpole moment of the wrong sign. Thus the numerical results, at least for the S and D states, are highly unsatisfactory, Qualitatively the symmetrical theory is to be preferred because the charged mesons appear In cosmic rays; they might reasonably be supposed to disintegrate Into electron and neutrino; and they make possible, in principle,
an understanding of the enomolous magnetic moments of neutron and proton. In case the mesons are supposed to emft beta particles the Fermi constant is a product of the interaction constants pertaining to nucleon-meson interaction and mesonmbeta interactions. The decay period of a free meson, which has been accurately measured by Rossi, should depend only on the meson-beta interaction constant. There are, therefore, three determinations of the two constants and they are in violent disagreement. In addition to all this the calculated burst producing cross section of charged mesons in the atmosphere is much larger than the observed cross section.

From a quantitative point of view the neutral meson theory is the most promesing analog of the electromagnetio theory. Perhaps part of the reason for this is that it need not explain the properties of the observed, charged mesons. There is some indication from the seattering of high energy neutrons by protons, i.e, the case in which the P-wave becomes important, that the neutral theory predicts a too large cross section. The symmetrical theory accounts for the experiments on fast neutrons satisfactorily.

In conclusion it can only be said that it is hoped that further work on scattering cross sections at higher energies, angular distributions in scattering and photoolectric processes, the neture, particularly the spin, of the mesons, etc., will guide us in formulating a field theory of nuclear forces that will explain everything.

LA 24 (31)

January 13,1944

IECTURE SERTES ON NUCLEAR PHYSICS

Fifth Serles: The Statistical Theory of Nuclear Reactions

TECTURE XXXI. Introduction

The calculation and the theoretical prediction of the properties of atomio nuclei is made difficult chiefly by two reasons: our ignorance as to the exact nature of the nuclear forces, and our inability to solve the complicated, many body problems which we face in the quantum nechanical treatment of alnost any nucleus except the deuteron, Some attempts have been made, however, to obtain qualitative results from the theory in order to interpret the vast experimental material on nuclear reactions which been collected so far. In this article an account is given of the statistical methods of describing the behavior of nuclei. These methods use as few as possible actual assumptions concerning the nuclear forces or the nuclear structure. Their main assumptions may be summarized in the following points:
A) The nucleus can be considered as a "condensed phase" of the neutronproton system in the thermodynmical sense. The neutrons and protons form a state in which they are densely packed, so that the nuclear matter has definite boundaries: the volume is proportionel to the number of constituents. By assuming a spherical form, one can, therefore, introduce a nuclear radius $R=r_{0} A / 3 \quad$ where A is the number of constituents and $r_{0}=145 \times 10^{-13} \mathrm{~cm}$. The results from this formula are in fair agreement with values from experiments in which the size of the nucleus is involved. Furthermore - and this is the main part of assumption A - the characteristic properties of nuclear matter,
especially the close proximity of all constituents, are maintained even if the nucleus is excited to energies high enough so that it might emit one or more constituents, This is valid begause the probability of emission of the constituents is very small, so that the nucleus is in a well defined state before having emftted the particle, It is in a stote which has essentially the same properties as the lower excited states which do not emit particles,

This is in definite contrast to the situation with excited atoms, An electron escapes very rapidly if excited above ionization energy and no states of the atoms in which the electron is still close to the atom could possible be defined in this region of excitation. The nuclear conditions however, are similar to that of a liquid drop or a solid body, since the heat energy of such systems may well be much higher than the work necessary to evaporate one single molecule. The state before emission of this molecule has a life time long enough to be well defined. Emission of a constituent by means of nuclear excitation may then be divided into two steps: first the excitation to the excited state, and then the emission of the particle from the excited state. The analogous process in atoms, however, must be described in one single step, since the time interval until the electron leaves the atom is not long enough to define a regular quantum state in which the electron is still within the atom.

The assumption A is no longer fulfilled for very high excitation energles of the nucleus The range of energy in which the nucleus can be considered as in the condensed phase varies from nucleus to nucleus, but it is safe to assume that the assumption is true for a range of excitation up to a large fraction of its total binding energy
B) According to Bohr, a nuclear reaction can be divided into two well separated states. The first is the formation by the incident particle of a compound nucleus in a well defined state; the second is the disintegration of the compound system into the product nucleus and an emitted particle, The second stage can be treated as independent of the first stage of the process. The basis
of this assumption is the classical picture of a nucleus as a system of particles with very strong interaction and short range forces. If the incident partiole comes within the range of the forces, its energy is quickly shared among all constituents well before any reemission can ocour. The state of the compound nucleus is now no longer dependent on the way it was formed and could have been produced by any other particle with corresponding energy incident on a suitable nucleus. Its decay into an emitted particle and a residual nucleus is thus independent of what happened before,

Bohr's assumption is certainly right for a case in which there is only one single quantum state of the compound nucleus which can be formed by the incident particle considering its energy and other circumstances. Then, evidently, the properties of this state are well defined and independent of the way it has been excited. It is very probably not a good assumption if the state of the compound nucleus which is formed by the incident particles consists of a superposition of several stationary states. The course of the process then depends strongly on the relative phases of the states, and is therafore not independent of the initial process of excitation. In the case, however, that the density of states of the compound nucleus is very high, so that their widths overlap each other strongly, a great many states can be excited simultaneously by the incident particle. This phase relation may be at random and the resulting processes, therefore, independent of the way of excitation. It is possible that Bohr's assumption regains approximate validity for this case. This is made more than probablo by the classical picture of strong binding forces used above. Actually, classical considerations are justified in the region of high level density with overlapping levels where no quantum selectivity occurs.
C) The statistical method assumes the existence of average values of certain magnitudes averaged over states within a not too wide excitation energy interval. The everages are supposed to be slowly varying functions of that energy. The magnitudes concerned here are level distances, transition probabili-
ties to certain states, etc, The validity of this assumption can only be proved by successful applications. If the energy intervals of averaging must be taken too wida in order to assure slowly varying functions for the avorage values, the statistical method loses most of its value.

L4 24 (32)

January 13,1944

LECTURE SERIES ON NUCLEAR PHYSICS

Fifth Series: The Statisticel Theory \quad Lecturer: V. Feisskopf of Nuclear Reactions
IECTURE XXXII, Qualitative Treatment

A. The Spectrum of a Nucleus

The cenerel eharactor of the energy states of a nucleus can be described in the following maner, There is, so far, no definite regularity found estabIished in the spacing of the enorgy levels. The distance between the lowest levels is of the order of magnitude of I Mev, sometimes they lie closer and in groups. Information about lowest levels can be obtained manly from γ-ray spectrar Recently measurements of the energy loss of scattered particles have made it possible to determine the nuclear levels directiy. It is interesting to note that there is no indication of a marked dependence of the average distance of lowest levels on the welght, except a slight tendency to smaller distances for higher weight,

It is safe to assume that the level density increases with higher excitation energy as is expected of elmost any mechanical system. This inorease should be the stronger the more perticles the nucleus consists of. There is, however, no experimental materlal available for determining I vel distances above 2 or 3 Mev, Only the slow neutron capture experiments provide some very scant
ovidence on the level denslty around 8 Mev oxcitation as is explained below.
The states of the nucleus, with the exception of the ground state, have a finite lifetine because of the possibility of radiative transitions to lower states and of ejection of particles, (The emission of β-rays can be neglected here since its probability is extremely small:) The states thus have a finite widh $\&$ which $1 s$ connected with the lifetime H^{n} of the nth state according to the relation $4 \mathrm{~K} / \mathbb{t}_{n}$ If the finite lifetime is due to different emissions, the totel width Δ^{n} is the sum of partial widths, which themselves are proportional to the specific emission probabilities. We therefore can write:
where T_{r} is the radiation width and T_{a}^{n} the partial widh corresponding to the emission of a particle a, which may be a proton, a neutron, or ancopartiole, etc. Ta^{n} is the emission probability per second of a particle a by the state n .

The wiath of the low lying levels is purely a radiation width as long as the excitation energy is lower than the lowest binding energy of a particle. The binding energy B_{a} of a particle a is the energy necessary to remove it from the ground state and leave the residual nucleus in its ground state We therefore get $T_{a}^{n}=0$ if $E_{n}<B_{0}, B_{n}$ being the excitation energy of the nth level above the ground state. The binding energy B_{a} of a proton or a neutron is found to be about 8 Mev for nucled which are not too near the lower or upper end of the periodic table. The very Ifght elements about up to oxygen do not show any regulartity. From then on, 8 Mev is e good average but the value may be several Mev higher or lower in individual cases. At the heavy end of the table (A>200) the binding energy is smaller and reaches an average of 6 Mev for the elements of the weight of U.

These figures are taken from the total binding energy W_{0} of the nucleus; this is the enorgy necessary to decompoee the nucleus into neutrons and protons, which is given by the mass defect. The total binding energy W_{0} is roughly
proportional to the number A of constituents and it is therefore justified to assume that the binding energy B_{e} of one particle is W_{o} / A, which leads to the figures mentioned above 6

We know, however, from the Q-values of $p-n$ reactions that it requires sometimes as much as 4 Mev to replace a neutron by a proton This shows that large fluctuations in B_{a} from the average volue must be expected.

With sufficient excitation energy E_{n}, a particle a can be emitted with different energies, corresponding to the different states in which the residual nucleus can be left behind. We then can subdivide Γ_{a} into different partial widths:

$$
\begin{equation*}
T_{a}^{n}=\sum T_{a d}^{n} \tag{I}
\end{equation*}
$$

where T_{a} de denotes the width corresponding to an emission of a with the special condition that the residual nucleus should be left in the state α,

The widths 4^{n} increase with higher excitation energy since, firstiy, more particles can be emttted and secondly; more different states α of the residual nuclei are possible, so thet the number of terms in the sum (I) increases, and finally, it is expected that the probability of emission of a particle increases with its velocity. At a certain excitation energy E the width Δ^{n} becomes larger than the level distance and the levels overlap.

The nuclear levols in the region above $\mathrm{E}_{\mathrm{n}}=\mathrm{B}_{\mathrm{a}}$ can be investígated by the bombardment of nuclei with particles a of a given onergye. If the particle hits the nucleus and is absorbed, it forms a compound nuclous with an excitation energy $B_{a}+\epsilon$. This absorption should be apprecioble only if the energy $B_{n}+C$ is equal to, or within the width of an excitation level of the compound nucleus. Thus with monoenergetic particle bearn, it is possible to investigate, by varying the engrgy, the spectrum of the compound nucleus from B_{a} upwards. We expect to obsurve "resonancel absorption when $B_{a}+\in f$ equal to an excitation enorgy E_{n} : Resonanee levels have been observed with d-particle and proton bombardments on light elements up to aluminum. Unfortunatelys the average distance of levels
with an excitation energy above B_{a} becomes vory small with increasing atomic number so that the energy of the bombarding particle beam cannot be defined sherply enough to separate them in heavier nuclei. No resonance has been observed with beams of protons, deuterons, or α-particles for elements henvier than zinc $(z=30) \cdot A \approx 66$.

Although it is even more difficult to produce monoenergetic neutron beams of arbitrery energy, there is one energy region in which neutrons can be used with great success; nanely the region of very low thermal energies. Neutrons oan be slowed down until they reach thermal or nearly thermal energies. Their energy is then very well defined compared to the poor energy definition of beams of fast particles. Their energy can also be measured to a high accuracy by means of absorbers which have, in that region, a known enorgy dependent absorption (boron). Recently methods have been developed to produce neutron beams with very sharp energy up to 5 ev .

Resonance absorption with slow neutrons can, therefore, be expected even for heavy nuclei. Although it is not difficult to produce similar low onergy beams of charged particles, they are useless because they do not penetrate the Coulomb berrier of the nucleus.

The resonance capture experiments with slow neutrons give information as to the shape and width of the resonance levels of the compound nucleus and will be discussed in connection with the quantitative expressions. It is found that the main contribution to the width of these levels is the radiation width. This means that a captured slow neutron will in all probability stay within the compound nucleus, since the most probably effect is the emission of V-quantum after which the excitation energy sinks below B_{a} and no particle emission is possible.

Some evidence as to the level density of the compound nucleus can be obtained from the number of nucleq which are found to show resonance capture of slow neutrons. This number indicates the probability that a level lies in a region of a few volts above B_{a}. One obtains by that method a level distance of
roughly of the order 10 ev at the excitation energy Ba_{a} for elements whose atomic number A is about 100 or higher. It is much larger for lighter elements; in the region of $A \sim 60$ it is probably of the order of 100 ev .

We now proceed to the discussion of the cross sections of actual nuclear reactions. According to assumption B, we may write for the cross section $\sigma(a, b)$ of a nuclear reaction in which a nuclous is bombarded with a particle a and a particle \underline{b} is ejected:

$$
\begin{equation*}
\sigma(a, b)=\sigma_{a} \eta_{b} \tag{2}
\end{equation*}
$$

Here $\boldsymbol{\sigma}_{a}$ is the cross section for the formation of the compound nucleus, and η_{m} is the relative probability that the particle b is emitted.

The cross section σ_{a} can be written in the following form:

$$
\sigma_{a}=s_{a} \xi_{a}
$$

Here S_{a} is the maximum value $\boldsymbol{\sigma}_{a}$ can possibly assume and \mathcal{E} is the "sticking probability" of a which necessarily is smaller than unity. For neutrons whose wave length X is large compared to the nuclear radius $R S_{a} \not X^{2}$. For charged particles, S_{a} can be roughly defined as the cross section for penetration to the surface of the nucleus and is strongly dependent on the energy in the famfliar way of the Gemow-penetration of Coulomb barriers. The quantitative discussion is found in section XXXIII.

Ea tho probability that a formation of the compound nucleus takes place, if the particle has reached the nucleus. As a function of the energy, \mathbb{E} will display the resonance properties, mentioned before. It will be small between the resonances and large when $\mathrm{B}_{\mathrm{a}}+\mathrm{is}$ equal or near to an excitation level of the compound nucleus. From a certain value \subset on, the widths of the levels overlap and $\mathcal{\xi}$ becomes a smooth function which, however, must be smalier or equal to unity. Naturally, an average value of $\mathcal{\xi}$ over the resonance is needed if the Incident beam is not sharp enough in energy to separate the levols.

It is reasonable to assume that ξ_{5} becomes unity if χ_{a} is small compared to the distance between the nuclear constituents. Then, classical considerations
can be applied, which make it seem very plausible that every particle which comes within the range of the nuclear forces is incorporated into a compound nucleus. This coition is fulfilled for energies above 10 Mov .

The second factor in $(2), n_{b}$ is the relative probability that a partche is endued by the compound nucleus. $7 b^{i s}$ evidently given by

$$
\begin{equation*}
\eta_{\mathrm{b}}=\bar{p} / \sum_{c}{ }_{c} \tag{3}
\end{equation*}
$$

Here T_{b} the partial width of the compound state, for the emission of a particle b, averaged over the compound states which are excited by the first stage of the process. The sum in the denominator should be extended over all particles c which are ejected.

Tho computation of the \bar{T} is funderentcily not different from the calculation of the $\mathbf{C}_{\mathbf{a}}$ The are the probabilities of the opposite process to the formation of a compound nucleus and there is a fundamental relation between the probability of opposite processes. This relation is worked out in detail in Section XXXIII.

A few qualitative conclusions can be drawn without using the formulas. The T_{n} for neutron emission is always much greater than the p or proton emission, or the \bar{T}_{b} for any charged particle, because of the Coulomb potential barrier, except under unusual conditions that the binding energy of the proton is considerably smaller than that one of the neutron, so that the proton has much more energy at its disposal. Thus, if a reaction with neutron emission is energetically possible, this is generally more probable than all the other emissions. exceptions are found only Just above the threshold of a paction with neutron emission, when the neutron has very mall energy, The Pp and T_{a} are strongly energy dependent and become smaller with larger Ko. Nuclear reactions with of a-emissions therefore are very rare for heavy clements.

Deuteron emissions have never been observed. This is because of the high energy to remove a deuteron from the compound nucleus; it is equal to the work of removing two constituents minus the small amount of the deuteron binding
energy. The emission of a neutron alone is therefore by far much more probable. What can be predicted as to the energy distribution of the emitted particles? After emission of a particle, the residual nucleus is left in one of its excited states, say with an excitation energy E_{β} or in its ground state. The energy

$$
\epsilon_{b}=E-B_{b}-E_{\beta}
$$

where E is the excitation energy of the compound nucleus which is in turn determ mined by the energy \mathcal{C}_{a} of the incident particle $\underset{a}{ }$, producing the compound nucleus: $E=B_{a}+\epsilon_{a}$, To every level $E_{\boldsymbol{A}}$ of the residual nucleus corresponds and energy value $\epsilon_{b} \beta$. Thus the energy distribution of the particles emitted consists of a series of peaks which are a picture of the spectrum of the residual nucleus, the highest energy corresponding to the lowest level of the residual nucleus. In the special case that the incident particle is the same as the emitted one - $(n, n)-(p, p)$ process - we thus obtain

$$
\epsilon_{b}=\epsilon_{a}-E_{\beta}
$$

A - Ground level of initial nucleus
B - Ground level of final nucleus
C - Ground level of compound nucleus
The highest energy \mathbb{C}_{b} corresponds to the elastic scattering. This peak will be the strongest, especially in the cose of charged particles, since
it contains also those partioles which are scattered by the outside fields. Actually it is impossible to distinguish between the following four contributions to the elastic scattering, which give rise to scattered wave-functions which are superposed ooherently*).
a) Scattering by the Coulomb lield if any
b) Scattering by the shape of the nucleus in analogy to the optical diffraction
c) Penetration to the surface of the nucleus and reflection there
d) The forming of a compound nucleus with successive raemission with equal energy

It is, however, Important to distinguish d) from the other contributions in order to define the sticking probability \mathcal{E}_{0}. The part $\sigma_{c} \ell$ of the elastic scattering ${ }^{*}$) which corresponds to the formation of the compound nucleus can be defined by connecting It with probability Fa of the inverse process of emission of the particle by the compound nucleus, with leaving the residual nucleus in its ground state moll. The latter process is completely defined and the cross section of its inverse is well defined (see Section XXXIII).

If the energy E is high enough; a great many levels E of the residual nucleus can be excited. The energy distribution of the particles emitted becomes continuous in the region where the levels of \mathcal{E} are closer together than the definition of the energy of the incident beam. The shape of the distribution function $I\left(\mathcal{C}_{b}\right)$ is then essentially given by the level density $\omega\left(\epsilon_{\beta}\right)$ of the residual nucleus, multiplied with the average emission probability $p\left(\mathbf{f}_{\mathbf{L}}\right)$ into one residual level of that energy:

$$
\begin{equation*}
I(g)=P\left(\epsilon_{\rho}\right) * \omega\left(E_{\rho}\right), \quad E_{B}=E_{f} \theta_{b}-E_{b} \tag{4}
\end{equation*}
$$

As it is shown quantitatively in section XXXIII, this probability $P\left(\mathcal{C}_{b}\right)$ is in *) The problem is equivalent to the discussion whether resonance fluoresence can be interpreted as pure Rayleigh scattering or whether the atom is actually lifted to the excited state and subsequentiy emits the scattered light. Because of the coherence of the incident and scattered light, the first interpretation is more appropriate.
general (apart from individual fluctuations) proportional to the energy b and to the penetration probability through the potential barrier in case of charged particles. $P\left(\epsilon_{b}\right)$ is an increasing function, $\boldsymbol{\omega}\left(E_{\beta}\right)$ a decreasing function of $\boldsymbol{\varepsilon}_{b}$. We therefore obtain an energy distribution in the region in which the levels of the residual nucleus become undissolved, with a definite maximum which is in the case of uncharged particles very similar to a Maxwellian distribution. This is discussed quantitatively in Section XXXVI.

LA. 24 (33)

January 20, 1944

LECTURE SHRIES ON NUCIEAR PHYSICS

Fifth Series: The Statistical Theory Lecturer: V. F. Weisskopf
of Nuclear Reactions

LECTURE XXXIII. Cross"Sections and Emission Probabilities

The values of the cross sections of the formation of a compound nucleus by impact of a particle with a nucleus, and the probabilities of the inverse process, the emission of a particle by a nucleus, obey certain general rules, which are derived from the geometrical properties of the problem.

Let us consider the cross section $\sigma(c)$ of the formation of a compound nucleus. It is appropriato to decompose any cross section σ of a nuclear process into the partial cross sections σ_{q} belonging to the contributions of the particles with an angular momentum $\hbar \boldsymbol{l}$ in respect to the scattering center:

$$
\begin{equation*}
\sigma^{(c)}=\sum_{l} \sigma^{(c)} \tag{6}
\end{equation*}
$$

The argular momentum in respect to the scattering center of a classical particle moving in a straight beam is given by m d where d is the nearest distance of a straight direction of motion to the center Quantum theory admits only integer multiples of \hbar as values for the angular momentum and it is justified to say
that, in a straight beam, all particles moving along lines, whose distance a from the center lies between ℓx and $(\ell+1) x(x=\hbar /$ have an angular momentum $h \ell$. Thus all particles of angular momentum h laos an area perpendicular to the beam of the size $(2 \boldsymbol{Q}+1) \pi X^{2}$. A nuclear reaction which removes particles of a given angular momentum from the beam, cannot remove more than come in and thus never have a cross section σ_{6} larger than that area:

$$
\begin{equation*}
\sigma^{(0)} \leq(2 L+1) x^{2} \tag{7}
\end{equation*}
$$

A more exact derivation of this relation is given below.
It is to be expected that particles, whose nearest approach on a straight line, d, is larger than the range R of any forces coming from the scatterer, will not be scattered at 211. Thus $\sigma_{\ell}=0$ if $d>R$ or

$$
\sigma_{l}^{(c)}=0 \quad(\ell \times>R)
$$

We obtain the maximum possible cross section of a system if we assume that $\sigma_{l}^{(c)}$ has its maximum value for l l $<R$.

In case $R / X \gg 1$ this sum gives in a good approximation

$$
\begin{equation*}
G^{(e)} \leq \pi R^{2} \quad(R / x>1) \tag{8}
\end{equation*}
$$

a result which is not surprising since it means that the cross section of a nuclear reaction must be smaller or equal to the geometrical cross section, if the wave length is small compared to the radius.

We now proceed to the exact derivation of these results. We use the well known decomposition of a plane wave in the z-direction.

$$
\begin{equation*}
\psi=e^{i k z}-\left(k \pi / \sqrt{2 k r} \sum_{l=0}^{\infty} \sqrt{2 k+1} i^{l} J_{l+\frac{1}{2}}(k r) Y_{l}^{(0)}(\rho)\right. \tag{9}
\end{equation*}
$$

Here $J+\frac{1}{2}$ are Bessel functions and $Y(0)$ ere spherical harmonies normalized to unity.

$$
2 \pi \int\left(y^{(0)}\right)^{2} \sin \rho d 9=1
$$

In this series (9) the plane wave is decomposed into subwaves belonging to the angular momentum $h h_{\text {. }}$ It is seen from the asymptotic expression at large r.

$$
\left.e^{i k z} \rightarrow \frac{\sqrt{\pi}}{k r} \sum_{l=0}^{\infty} \sqrt{2 l+1} i e^{-i(k r+\ell \pi / 2}-e^{+i(k r+l \pi / e)}\right] Y_{\ell(10)}^{(0)}
$$

that every subwave consists of a superposition of an incoming and an outgoing spherical wave of equal intensity (first and second term in the square bracket) ; If a particle wave of this form impinges upon a nucleus, the super position is changed in two ways: \&) the intensity of the outgoing spherical wave is diminished due to absorption of the particles (the latter may or may not be remitted); b) the phase of the remaining outgoing wave is changed. Both effects give rise to a scattered wave since the outgoing wave is no longer able to interfere with the incoming wave in the same way as in (9), the only way in which there is no radiation from the center. Thus the actual wave function ψ has not the asymptotic form (10) but

$$
\psi=\frac{\sqrt{\pi}}{k r \sum_{\ell=0}^{\infty} \sqrt{2 \ell+1}} \ell\left[e^{\left.-i(k r+l \pi / e)_{-n e} i \delta_{l} e^{+i(k r+l \eta}\right]_{l} l_{l}^{(0)}\left(10_{2}\right)}\right.
$$

The outgoing waves have received a factor $\eta e^{e i \delta}$ where $\eta \leq 1$. If absorption has taken place, η is smaller than unity. $\mathbf{2 b}_{l}$ is the phase shift of the outgoing waves.

Let us decompose (10a) into the incoming subwaves:

$$
\begin{equation*}
\operatorname{rn}^{1}=\frac{\sqrt{x}}{k r} \sqrt{2 l+1} i^{i}-i\left(k r+l r<\sum_{l}(0)\right. \tag{iI}
\end{equation*}
$$

and the outgoing ones

$$
\phi_{\ell}^{0}=\frac{\sqrt{m}}{k r} \sqrt{2 l}^{2 l+1} 1^{l} \eta \theta^{21 \delta} e^{1\left(k r+l^{\pi / 2)}\right.} Y_{l}^{(0)}(11 a)
$$

The mount absorbed per second, for a single l, is given by the diffference of the currents of $\varnothing_{l}^{(i)}$ and $\phi_{\ell}^{(0)}$ through a large sphere of radius r :

$$
r^{2} \int\left[v\left|\rho^{(i)}\right|^{2}-v\left|\phi^{(0)}\right|^{2}\right] \sin 9 d 9=\left(1-\eta^{2}\right) v(2 l+1)\left(\pi / k^{2}\right)
$$

Since there are $v=h k / m$ incident particles per cm^{2} and second in the original plane wave $e^{i k=}$, the cross section for the absorption of particles of angular momentum l, is

$$
\begin{equation*}
\quad \sigma_{f}^{(c)}=\left(1-n^{2}\right) \operatorname{n} x^{2}(24+1) \tag{12}
\end{equation*}
$$

This is in agreement with the statement contained in (7).

The difference between (10a) and (10) is the wave which one has to add to a plane wave $\left(e^{1 k z}\right)$ to get the actual wave $/ / /$; it is therefore the scattered wave:
$\mu-e^{i k z}=\frac{\sqrt{\pi}}{k r} \sum_{l=0}^{\infty} \sqrt{2 l+1} i^{l}\left(1-\eta e^{2 i \delta}\right) e^{1}(k+1 l \pi / 2) \quad{ }^{\circ}$
The cross section $\sigma_{l}^{(e l)}$ for elastic scattering, for a single l, can be obtained by calculating the current of the Lh subwave of $/$-elks through a large sphere and dividing it by the current of the incident wave. This gives This can also be written in the form $\sigma_{l}^{(e)}=\left|\left(1-n e^{2 i \delta}\right)\right|^{2}(2 L+1)$

$$
\begin{equation*}
\sigma^{(e l)}=\left[(1-\eta)^{2}+4 \eta \sin ^{2} \rho\right](2 L+1) \pi x^{2} \tag{14}
\end{equation*}
$$

It is seen from (12) and (14) that certain relations hold between the capture cross section $\boldsymbol{O}_{\boldsymbol{l}}()$ and the elastic one, $\boldsymbol{q}_{\boldsymbol{l}}(\boldsymbol{d}$. The upper limit of the capture cross section is given by (7). The elastic cross section, however, has a higher upper limit, which is reached if $\eta=1$ and $\hat{l}_{\ell} \pm \pi / 2$:

$\sigma_{l}^{(e l)} \leq(a 4+1) 4 \times x^{2}$

This maximum can only be reached if $\eta=1$ or if $\delta_{\ell}^{(c)}=0$
This can also be understood in the following way: the maximum effect of elastic scattering is obtained by a change of phase of f of the second term in the square bracket of (10) (the outgoing subwave) without reducing its intensity. This is identical with adding to the plane wave just twice the outgoing subwave. Thus the cross section corresponding to this, is 2^{2} times larger than the one resulting from absorbing the outgoing subwave. Hence we get a maximum cross section for scattering four tines larger than for absorption,

The expressions (12) and (14) limit the possible values of $\theta_{l}^{(e l)}$ for a given value of $\boldsymbol{\sigma}^{(c)}$. This is indicated in Fig. 1 , whore the upper and lower limits of $\sigma_{l}^{(e l)}$ is plotted against $\sigma_{l}^{(c)}$. It is seen that it is necessarily

The following theorem is of interest, since it connects the total cross section with the amplitude of the elastic scattering the total cross section is
given by

$$
\sigma_{l}^{(t o t)}=\sigma_{l}^{(c)}+\sigma_{l}^{(e l)}=(2-2 n \cos 2 \rho) \pi^{2}(2 l+1)
$$

which also can be written in the form:

$$
\sigma_{l}^{(t o t)}=\left(A_{k}+A_{2}^{*}\right) n x 2(2 l+1)
$$

where $A=\left(1-p^{2} i \delta_{l}\right)$ is the value by which one has to multiply the outgoing subwave of the undisturbed plane wave in order to get the scattered subwave (13).

Fig. 1: Upper and lower limit of the elastic cross section for given capture cross section.

If the scattering object (actually the range of the scattering forces) is large compared \boldsymbol{A}, all waves for which $\boldsymbol{X} \boldsymbol{X} \mathbb{R}_{\text {can }}$ be absorbed, but the waves for which $l-R / x>1$ vanish for $r>R$ and thus are not influenced and should have $\sigma_{\ell}^{(C)}=0$. If R / X is a large number, it is a good approximation to
assume $\sigma_{l}=0$ if $|k\rangle$, and we obtain the expression (6) for $\sigma(c)$.
It is interesting to note, that the total cross section
$\sigma_{\text {total }}=\left(\sigma^{(e l)}+\sigma^{(c)}\right)_{o f ~ a ~ s p h e r i c a l ~ o b j e c t, ~ l a r g e ~ c o m p a r e d ~ t o ~ t h e ~ w a v e ~ l e n g t h ~}$ of the Incident bean, is twice the geometriocl cross section $T R^{2}$ if it totaly absorbs all particles that hit it. This is seen in the following way: our assumption of total absorption is equivalent with the statement that $\sigma(C)$ reaches Its maximum value πR^{2} According to Fig. 1 the elastio cross section is then equal to $\sigma^{(6)}$, so that $\sigma^{(t \circ t)}=2 \pi R^{2}$, The result, paradoxical at first, is explained by the fact that a sphere which absorbs all particles falling upon it, casts a shadow in the bean. A shadow is, in terms of the wave pleture, a pecullar interference effect of a scattered wave with the Incident wive. Evidently the soattered wave producing this effect, must have an lntensity equal to the anount of beam taken out by the shadow. Thus we get also an lastic cross section of πR^{2} The shadow becomes diffuse in distance $\sim\left(R^{2} / X\right.$ from the objuct, since the waves passing by the object are diffracted and change their direction by an angle $\sim(x / R)$. In distances large conpared to R^{2} / X the shadow is dísolved and an elestic scattering can be obsorved within a scattering angle of x / R. These considerations ere valid only if $\lambda \ll R$. If λ becomes comparable to R, the elastic scatering is essentially unprediotable, since then assumes its maximum value only for very few vaiues of l and it is mostiy lower then its maximun.

The geometrical limitations of oross sections are of special importance in connection with the relation between inverse processes, Any limitation on a cross section of formation of a compouid nucleus, also Implies a limitation of the probability of emission of a particle by the oompound nueleus. This connection is based upon the principle of detailed balance which oonnects processes which are inverse to one another.

We compare the following two processest a) the formation of a corpound nucleus by a patticle a, with the angular monentum $\hbar l$, incidont upon an initial
nucleus in the state a; b) the emission by the compound nucleus, of a particle a with an angular momentum $\hbar \ell$, and leaving the residual nucleus in the state α. The two processes a) and b) are inverse. The first process is measured by a cross section $\sigma_{a \alpha} f$ and the second by an emission probability $\Gamma_{a} a t$ wo should also have specified the direction of the spin of the emitted particle in respect to some arbitrary axis. We omit this and assume in the following that the spin is given together with the angular momentum ℓ. In the definition of $\sigma_{a} \alpha l$ it is assumed that the incoming beam is spread over an energy interval large enough to excite many component levels. Tach is the average value of the emission probability, averaged over these levels which can be excited by the first process within a small energy region.

In order to save indices, we replace the triple index (adc) by α and write σ_{α} and $\Gamma_{\boldsymbol{\alpha}}$, wherever it is practicable. The result of the following considerations will be the relation

$$
\Gamma_{a}=\frac{\sigma_{a} D}{2 \pi^{2} e}
$$

where D is the average distance between the levels, which can be excited, Before going into the detailed derivation, it is useful to understand, why a relation of this character is expected to exist.

Let us first assume that no other process but the one characterized by $T_{\boldsymbol{\alpha}}$ can follow the absorption given by $\sigma_{\boldsymbol{\alpha}}$. In this case, the level width is equal to Γ_{α}. It is to be expected that σ_{α} is proportional to the ratio T_{α} / D of the width to the distance of levels, because this magnitude measures the relafive portions of the spectrum in which absorption is possible. It is plausible that the maximum absorption is reached, if Γ_{α} / D is of the order of unity. The maximum value of σ_{α} is $\pi x^{2}(2 l+1)$ and wo may expect a relation of the type

$$
\frac{\pi x^{2}(2 L+1)}{\sigma_{0}}=\text { const. } \frac{T}{D}
$$

where the constant is of the order unity. The detailed calculation shows that it is $2 T /(2 l+1)$: This consideration also holds true if the compound nucleus created by the absorption of the particle a cen decay in several ways, This eft-
fect would broaden the lines but would not change the obsorption average over the Iines.

Let us now compare the probabilities of the two inverso processes. The probabilities should be equal if they ended in states of equal weight. Since this is not the case, they should be equal after dividing then by the statistical weight of the end states.

The probability W_{1} per second of the creation of the compound nucleus by the particle a if it is enclosed in a bis sphero of radius R is given by

$$
\begin{equation*}
W_{1}=\frac{\sigma_{a}}{(2 l+1) \pi} \frac{v}{2 R} \tag{15}
\end{equation*}
$$

where v is the velocity of the particle and x its wave length. This can be understood in tho following way: if σ_{a} essumes its maximun value $(2 \boldsymbol{l}+1) \mathbb{T} x_{a}^{2}$, the particle with an angular monentum $h l$ is sure to be captured on its way to the center of the big sphere. The average probebility per unit time is then $v / 2 R$ since it may be found anywhere along a diameter. (Its angular momentum $\mathcal{A} K$ being Iixed, it moves on lines which have a given distance ℓX from the center The length of these lines is neenty $2 R$, since R is assumed very large $R \quad \boldsymbol{R} \boldsymbol{X}$ In case σ_{α} is smaller than its maximum value this probability is reduced in the corresponding ratio and (15) results.

We now compare the statisticel woights of the end states of the two inverse procosses, If the energy of the incident particies lies botween ϵ and $e+d e$ the statlstical woight of the end state is $\omega_{c}(E) d E$, where $\omega_{c}(E)$ is the level density of the compound nucleus at the excitation energy E which will be excited. (Only these levels are countod, which can be excited owing to angular selection rules.)

The probability of the Inverse process is T_{α} / \hbar and the statistical weight of its end state is the stetistical weight of a free particle with the energy between ϵ and $\epsilon+d \epsilon$ and the angular monentum $\hbar \ell$ in a sphere of a radtus R, ranely $[(2 t+1) / t h v]$ Rde

We thus get

$$
\frac{\Gamma_{c} / a v}{(2(+1) R}=\frac{W_{1}}{\sigma_{c}(t)}
$$

and from (25)

$$
\begin{equation*}
\Gamma_{\alpha}=\frac{\sigma_{\alpha}}{2 \pi^{2} x_{\alpha}} \frac{1}{\omega_{c}(\varepsilon)} \tag{16}
\end{equation*}
$$

By expressing cross section σ_{α} by a dinensionless manitude $Q_{\alpha}+\sigma_{\alpha} /(2 l+1+\pi$ which never can be larger than unity, and by introducing the average level distance $D=1 / \omega_{C}(E)$ of the compound nucleus, we obtain

$$
\begin{equation*}
\frac{T_{a}}{D}=Q_{a} \frac{(3 h+1)}{2 \pi} \tag{16a}
\end{equation*}
$$

The partial width of the emission of a particle with a given angular momentum and with the rosidual nucleus left in a definito state α; is thus bound by an upper linit (Q SI):

$$
\begin{equation*}
\Gamma_{\infty} / D(2 l+1) / 2 \pi \tag{166}
\end{equation*}
$$

A few remarks are necessary concerning the significance of the level distance D. D is defined as the distance between the levels of the conpound nucleus, from which the particle can be omitted. It is tho distance between the levels which can be excited by the particle a with the angular momenturn $\hbar \boldsymbol{\ell}$ (and given spin), hitting a nucleus in the state α. On the other hand, Γ_{α} is the partial width for the emission of a, with the sale properties averaged over the levels described above (whose avernge distence is D) within a cortain mall energy region, Expression (16a) is not bound to this definition of D. For exaraple, D could be defined as tho average distance between all levels of the component nucleus in this energy region, if Γ_{a} is then understood as the average over all these levels, (for nost of which $\Gamma_{\alpha}=0$), the relation (16a) is then again veld. In the following we will, however understend by D and Ta the average distance and width of the levels which oan emit the particle a with the properties specified above.

LECTURE SERIES ON NUCLEAK PHYSICS

Fifth Series: The Statistical Theory \quad Lecturer: V. F. Weisskopf of Nuclear Reactions
LECTURE XXXIV. The Excited Nucleus

Let us consider a mucleus in an excited state n in which it is able to emit particles. The state n has a finfte lifetime and the probability of finding the nucleus in this state decays accordine to the law $e^{\Gamma^{n}} t$. is the width of the state. In general the state n cen emit different particles a and these particles may be emitted with different angular momenta ℓ hand the residual nucleus may be left behind in different states α. Therefore the width Γ^{n} can be subdivided in the following way:
$\operatorname{cn}_{n} \Gamma^{n} \sum_{2 \alpha}^{\Gamma^{n}} \alpha \alpha$
where $\int_{\text {and }}^{\text {is the partial width for the emission of a with an angular momentum }}$ Kl, leaving the residual nucleus in the state α.

The value of $\Gamma_{a \alpha}^{\boldsymbol{h}} \boldsymbol{l}^{\text {is determined by intranuclear and extranuclear }}$ factors, and it is useful to separate them into the following ones: the probabilIty per second, $\Gamma_{s a l}^{n}$ of emission of a particle a is proportional to the folLowing magnitudes:

1) The final velocity v^{n} which it acquires after having left the nucleus and after having penetrated the potentiel barrier if there is any;
2) The penetrabilit TaL (ϵ) of the barrier which is defined as the relative decrease of intensity of an outgoing spherical wave, corresponding to the particle a, from the nuclear surface through the potential barrier to the outside. It is useful to consider as potential barrier, not only the Coulombfield In the oase of charged particles, but also the potential of the centrifugal force
$\hbar^{2} \ell(\ell+1) / 2 m$ in the case of an emission of a particle with an angular momentum 4. This force is described by a repulsive potential, inversely proportional to the square of the distance, and acts on a particle in the same way as the Coulomb repulsion, $T_{a}(\epsilon)$ is a function of the charge and of the angular momentum of a and of the energy \leq, which it eventually acquires.
3) Γ^{n} is furthermore depending on the internal nuclear conditions which govern the separation of a from the nucleus and which are lumped together in a factor G^{n} a\&t Thus we can write:

$$
\begin{equation*}
\Gamma_{a \alpha l}^{n}=k_{a}^{n} G_{a \alpha l}^{n} T_{a l}\left(c_{a}^{n}\right) \tag{19}
\end{equation*}
$$

where k_{α}^{n} is the wave number corresponding to the energy of the outgoing particle after penetration of the potential barrier, and is proportional to the velocity

A more quantitative derivation of (19) can be given as follows:*)
Let us consider a nucleus with A constituents in an excited state n, in which it is able to emit particles. The quantum mechanical description of a decaying state is somewhat different from the familiar form of an eigenfunction of a genuinely stationary state. We represent the mechanical system of the nucleus by a Schroedinger equation:

$$
\begin{equation*}
H \Psi_{n}=W_{n} \Psi_{n} \tag{20}
\end{equation*}
$$

where H is the Hamilton operator of the nucleus. The functions Ψ_{n} are the wave functions and depend on the coordinates $r_{1} \ldots r_{A}$ of the A constituents.
W_{n} is the corresponding eigenvalue. The values W_{n} form a spectrum of discrete values from the ground state W_{0} up to a certain limit $W_{0}+\bar{E}$ where \bar{E} is the minimum excitation energy at which a particle might escape from the nucleus. \bar{E} is ecual to the binding energy of the loosest bound particle. Above \bar{E} the spectrum is strictly continuous since the total system, described by (20) necesm sarily includes all free states of the particle removed from the nucleus. Among these thare are also states into which the particle could never have come after *) The reader may continue on page 232 if he is not interested in the more quantitative derivation.
being emitted by the original nucleus as, for example, a state in which the particle has a very high angular momentum in respect to the residual nucleus. In order to describe the excited states of the nucleus above \vec{E} which are defined by our assumption A, it is necessary to introduce a device to exclude the solutions of (20) which correspond to a residual nucleus plus a freely moving independent particle which is not created by an emission of the compound nucleus. This can be done by means of boundary conditions for Ψ_{n}, which should express the fact that, in case the state n includes free particles outside the nucleus, they must be represented by outgoing spherical waves. With these conditions the equation (20) no longer has a continuous spectrum above. E. It then has discrete eigenvalues which belong to quantum states of finite lifetime, because of their ability to emit particles.

Let us introduce a radius R, the nuclear radius, which is the shortest distance from the nuclear center at which practically no nuclear force acts upon a nuclear particle. (The particle might, however, at that distance bo under influence of, say, the Coulomb force.) The eigenfunction Ψ_{n} have the following form for $r_{a}>R$:

$$
\Psi_{n}=\sum_{a} x_{a} \psi_{a \alpha}^{n}\left(\underline{r}_{a}\right)
$$

Here x_{a} are the eigenfunction of the states α of the residual nucleus which is left behind, if the particle a is removed from the nucleus; $\frac{\mathbb{Z}}{\mathrm{n}} \boldsymbol{\alpha}$ is the wave function of the particle a outside the nucleus, $\not \mathscr{H}_{n}\left(r_{a}\right)$ is a solution of the following one body equation of the particle a in the space outside of the nucleus:

$$
\Delta \psi_{a \alpha}^{n}+\left[\left(k_{a \alpha}^{n}\right)-\left(2 \pi_{n} 2\right) V_{a}\left(r_{a}\right)\right] \mathbb{K}_{a}^{n}=0
$$

Here V_{e} is the potential outside of the nucleus $\left(\mathrm{V}_{\mathrm{a}}=\underset{\mathrm{Z}}{ } \mathbf{Z} \mathrm{e}^{2} / \mathrm{r}_{\mathrm{a}}\right.$, where z is the charge of the particle and Z is the nuclear charge); $k_{a a^{n}}$ is the wave number at infinite distance, when $\mathrm{Va} \rightarrow 0$. It is

$$
\begin{equation*}
k_{a \alpha}^{n}=\left[\left(2 m / \hbar^{2}\right)\left(W_{n}-W_{a}\right)\right]^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

where W_{a} is the energy of the residual state a, Wo can write

$$
\begin{equation*}
\psi_{a \alpha}^{n}=\left(1 / r_{a}\right) \sum_{l_{m}} \Phi_{a \alpha l}^{n}\left(r_{a}\right) Y_{l}^{(n)}\left(\varphi_{a} \phi_{a}\right) \tag{22}
\end{equation*}
$$

Here $y_{\ell}(m)$ is the nomilized sphorical hermonics and $\Phi_{\text {atel }}$ depends on r_{e} only. The sum over lim conteins only these values which are in egroment with the consurvation of the total anculer monontum. Thie vector sum of the angular monents (plus spins) of the outgoing perticle and of the rosidual nuclus α must be ocuel to the anguls momentum of thu deceying stetu n. If the total onergy W_{n} is not high enough to allow thu particlo a to userpe with the residuel nuclous in the state α, the relation $W_{n}<\alpha$ is velid nd k_{a}^{n} will be inaginery eccording to (21). $\Phi_{a \alpha l}^{n}$ will be en exponentially decrossing function of r_{a} In order to reduce the number of indices, wo write all three indices aclinto one, and write only one greek indexa instund, ie now went to express that onty those states \mathbb{H}_{n} should bo considerod, which corrospond to docaying nuclear statos. This can be done by postulating thet the functions ψ_{α}^{n} should be outgoing weves only. The rediel dependent part Φ_{α}^{n} of (22) should heve the asymptotic form:

$$
\begin{equation*}
\phi_{\alpha}^{n}=s_{\alpha}^{n} e^{i k}{ }^{n} r_{a} \text { for } r_{a}>r_{0} \tag{23}
\end{equation*}
$$

where ro is a large distance at which the kinetic enorgy of all jarticlos omitted is nuch lerger than tho potential onergy $V_{f}\left(r_{2}\right)$ and the contrifugal force $\ell(l+1) h^{2} / 2 m^{2}$. The semp can ba oxpressed by boundary conditions:

$$
\begin{equation*}
\left(\sigma \sigma_{a}-1 k_{a}^{n}\right) \Phi_{\infty}^{n}=0 \quad \text { for } r_{a}=r_{0} \tag{24}
\end{equation*}
$$ (In (23) and (24) $k_{n \alpha}^{n}$ is given by (21) and thet sign of the square root must bo thkon for which tha rucl part of $k_{a \alpha,}^{n}$ s positivo.

These conditions ar, of course, compatible with the wave equation (20). Tho equation (20) with the (complex) boundery conditions (23) or (24) has solutions for which n_{n} is necossarily complex:

$$
\begin{equation*}
W_{n}=E_{n}-1 T^{n} / 2 \tag{25}
\end{equation*}
$$

A complex eigenvalue means that the state decays exponentially according to $e^{-\Gamma}$,
so that Γ^{n} is the reciprocal half life or the width of the state n.
(Actually k^{n} also is complex because of the fact that (21) contains the complex W_{n}. It expresses the fact that the outgoing wave (23) changes in intensity with r_{2}. It increases due to the fact that the nuclear state decays exponenttially and that the parts farther away are emitted in an earlier stage. This change of intensity along the outgoing wave, however, is only a very small effect as long as the width Γn of the level is small compered to the energy of the emitted particle. The ratio between real and imaginary parts of k a is equal to the distance travelled by the emitted particle within the lifetime of the level n, measured in wavelengths $\lambda=\left(k_{\alpha}^{n}\right)^{-1}$. This ratio will be very large in all cases of interest and we neglect from now on the imaginary part of \mathcal{k}^{2} completely. except, of course, in the case $W_{n}<B_{a}$ (excitation energy less than boundary energy) in which $k a n$ is purely imaginary and $\Gamma^{n}=0$.)

We now express the level width Γ^{n} in terms of the $\Phi_{a}{ }^{n}$. The value of Γ^{n} is the reciprocal lire time of the level n and therefore equal to the number of particles emitted by the nucleus per second. We first subdivide Γ^{n} in the following way:

$$
\begin{equation*}
T^{n}=\sum_{a, \alpha, l} \Gamma_{a \alpha l}^{n} \tag{26}
\end{equation*}
$$

where $\overline{a c l}^{\text {is }}$ the partial width for the emission of a with an angular momentum ℓ, leaving the nucleus in the state σ. We surround the nucleus by a sphere with the radius r_{0} and determine the number of particles a with the above properties crossing that sphere per second, which in turn is equal to $T_{a \alpha, l}^{n}$. Thus we obtain (the index $a \boldsymbol{\alpha} \boldsymbol{l}$ is replaced by α)

$$
\begin{equation*}
\Gamma_{a}^{n}=\left(4 n^{2} / m_{a}\right) k_{\alpha^{n}}^{n}\left|\Phi_{\alpha}^{n}\left(r_{0}\right)\right|^{2} \tag{27}
\end{equation*}
$$

under the condition $\oint\left|\psi_{n}\right|^{2} d \tau^{a}=1$, where $\oint d$ Integration over all variables in the limits $\left|r_{A}\right|<r_{0}^{*}$ If ψ_{n} is a slowly decaying state, so that the particle density octaeen the boundary R of the nucleus and r_{0} is very small compared to the density inside of the nucleus, we can also normalize Ψ_{n} by the integral

$$
\int\left|r_{a}\right| \leq R\left|\Psi_{n}\right|^{2} d \tau=1
$$

In the expression (27) the value of $\Phi_{\alpha}{ }^{n}$ is still dependent on the field outside
of the nucleus, Since the latter is well known it is useful to show its influence *) (K/ma) ${ }^{k} a^{n}$ is the velocity of the particle at $r_{0}\left|\Phi_{a}^{n}\left(r_{0}\right)\right|_{2}$ is, in the normpazation used here, $r_{0}{ }^{2}$ times the probability of finding a particle a in one volume unit at r_{0}.
explicitly in the expression for the width. We therefore express $\left.\Phi_{\alpha_{0}}^{n}\left(r_{0}\right)\right|^{232}$ by the value of the same function at the nuclear radius k. We introduce the magnitude $T_{\alpha_{\ell}}(\epsilon)$ which is the ratio by which the "(intensity $x r^{2}$)" diminishes in an outgoing wave of a particle a with an energy ϵ and an angular momentum $\ell \hbar$, if it penetrates the field around the nucleus from R to r_{0}. r_{0} had been chosen outside of all fields of fore so that the "(intensity x^{2})" is constant outside Fo. Tale(ϵ) can be called the transmission coefficient of the potential barrio. It can be calculated from tho wave equation of a particle with an anergy \in and an angular momentum $\ell \hbar$ in the field outside of the nucleus, whose solution we will call $\mathrm{Fa}_{\mathrm{a}}^{\epsilon}(\mathrm{r})$ for this purpose:

$$
\begin{equation*}
\left[\frac{d^{2}}{d r^{2}}-\frac{2 m}{\hbar^{2}}\left(\epsilon-V_{a}\right)-\frac{\ell(\ell+1)}{r^{2}}\right] \mathrm{F}_{a \ell}^{\epsilon}(r)=0 \tag{27a}
\end{equation*}
$$

If we choose the particular solution which corresponds to an outgoing wave and has the asymptotic form

$$
\begin{equation*}
F \rightarrow e^{+(\sqrt{2 m \epsilon} / \hbar) r} \tag{27~b}
\end{equation*}
$$

we get

$$
\begin{equation*}
T_{a l}(\epsilon)=\frac{1}{\left|F_{a l}^{\epsilon}(R)\right|^{2}} \tag{27c}
\end{equation*}
$$

T depends on the nature of the particle a (charged or not charged), its angular momentum $\hbar l$ and its energy $\epsilon=W_{n}-W_{\alpha}$ which it gets if it is emitted by the state n with a residual nucleus left in α.

The transmission coefficient $T_{a l}(\boldsymbol{\epsilon})$ for neutrons can be calculated in the following way: the functions $F_{a l}^{(\epsilon)}$ are given by the Bessel functions of half integer order and it is easily seen that the boundary conditions (27b) are fulfilled if

$$
F_{Q l}(r)=\sqrt{1 y / 2} H_{l+\frac{1}{2}}^{(1)}(y) \quad y=k_{a} r
$$

where $H_{l+\frac{1}{2}}^{(1)}(y)_{\text {is the well known Hanckel function of }\left(l+\frac{1}{2}\right)^{\text {th }} \text { order. Ono gets: }}$

$$
\begin{array}{ll}
T_{a l}=1 & \text { for } l=0 \\
=\frac{x^{2}}{1+x^{2}} & \text { for } l=1 \\
=\frac{x^{4}}{9+3 x^{2}+x^{4}} & \text { for } l=2 \tag{27~d}
\end{array}
$$

$$
\begin{gathered}
=\frac{2}{225+45 x^{2}+6 x^{4}+x^{6}} \text { for } \ell=3 \\
\frac{x^{2} l}{(2 l-1)^{2}(2 l-3)^{2}} \quad \text { for } x<1
\end{gathered}
$$

with $x=k_{\mathrm{a}}$. The value of $\mathrm{T}_{\mathrm{a}}(\Theta)$ for charged particles is difficult to ompute exactly, because of the very slow convergence of the expressions for the redial eigenfunction of the Coulomb field in the region considered here. It is evident that it decreases strongly with rising nuclear charge Z and with falling energy G. An approximate expression, calculated by using the W.K.B. method, is given by:

$$
\begin{align*}
& T_{a l}=\left(\frac{B-\epsilon}{\epsilon}\right)^{\frac{1}{2}} e^{-2 C_{l}} \tag{28}\\
& B_{l}=\frac{z Z e^{2}}{R}+\frac{h^{2}}{2 m^{2} R^{2}} \ell(\ell+1) \\
& C_{l}=\sqrt{2 m / k} \int_{R}^{r^{2}}(V-\epsilon)^{\frac{1}{2}} d r \\
& V(r)=\frac{2 L e^{2}}{r^{2}}+\frac{l+1 h^{2}}{2 m r^{2}}
\end{align*}
$$

Here ce is the charge of the particle al ${ }^{\prime}$ is the energy barrier height for a particle with an angular momentum $\hbar l$. In tho expression of C_{l}, r_{2} is the radius within which the potential energy V ts higher than the energy E of the particle, V includes the centrifugal term. The values of C are given in Bethetsarticle These expressions do not hold if \in is near B_{l} and the approximation is good only for higher nuclear charges $z>20$. We get finally an expression for the partial width

It is identical with expression (19), if we put

$$
G_{a \alpha l}^{n}=\frac{4 \pi \hbar^{2}}{m_{a}} \oint_{a \alpha \ell}^{n}(2)
$$

W) He A, Bethe, lev. Mod. Phys. 2, 163 (1937).

The fector G depends on the value of the eigenfunction Φ at the boundary of the nucleus and thus represents the influence at the intranuclear structure.

Expression (29) separates the offects of the forces outside of the nucleus by means of the factor T. The megnitude 2

$$
k_{a a}^{n} \frac{4 \pi h^{2}}{m_{a}}\left|\Phi_{a \alpha n}^{n}(R)\right|^{2}
$$

could therefore be called partial width without outside potential barrier. This separation of the barrier effect and the nuelear effect is by no moans complete. It is to be expected that the value of $\Phi_{a}(R)$ also depends on the form of the weve outside of $\mathbf{R} k$ since the inside and the outside part of the function must join smoothly.

Under certain conditions, however, there is good reason to expect that the values $\Phi_{\alpha}^{n}(R)$ do not depond on the behevior outside of the nucleus. Because of the strong forces inside of the nucleus, the average momentum p_{i} of a particle inside of the nucleus is very high and corresponds to an energy of 20 to 30 kov . The avorage momentum is an indication in what space intorval the wave function changes its value considerably, to defino an average weve length $\lambda_{i}=\hbar / \rho_{1}$ and we can say that the wave function inside the nucleus changes its value by an amount of the order of its averege size, if the coordineto of one particle is changed by λ_{1}. If the momontum p_{0} outside of the nuclear surface is much smaller then p_{1} :

$$
\begin{equation*}
p_{i} \geqslant p_{0} \tag{31}
\end{equation*}
$$

the wave function inside the nuclus must be joined at the nuclear surface to a wave function, whose valuo changes very slowly comparod to conditions inside. It is then a good approximation in the detormination of the wave function inside to assume that

$$
\begin{equation*}
\left(\sigma \Phi_{\partial \alpha l}^{n} / \sigma r\right)_{r=p}=0 \tag{32}
\end{equation*}
$$

for all particios. The values for $\Phi_{a \alpha l}^{n}(R)$ one gots with this boundary condition are not very difforent from the true one. Since this condition does not contain
any reference to the properties outside, the general behavior of $\left|\Phi_{\alpha}^{n}(R)\right|_{\text {is to }}^{235}$ be expected the same for charged and unchargod particles and also the seme for different l's.

Particularly, the avgrage valuos $\bar{\Phi}_{a}(\mathbf{R})^{2}$ over neighboring levels should be practically independent of the energy ϵ_{a} of the outgoing particle. It will depend only on the properties of the excited nuclous, whose excitation energy is $B_{\mathbf{a}}+\epsilon_{\mathbf{a}}$, an energy which is much lerger then in the region of validity of (31) end does not change appreciably in thet region. The average value $\mathrm{F} a \mathrm{l}$ of the partial width over neighboring levels, is then given by

$$
\Gamma_{a \alpha l}=C(E) \sqrt{\epsilon_{a}} T_{a l}(\epsilon), \quad C(E)=(\hbar / \sqrt{2 m})\left|\Phi_{a \alpha l}\right|^{2}
$$

where $C(A)$ is a function of the total oxcitation anergy $E=B_{l}+\epsilon_{a} \quad$ only, It does not vary strongly in an energy intorval which is small compared to $\mathbf{B}_{\mathbf{a}}$. Furthernore, it is approximately equal for the difforent particles which can be omitted by the compound nucleus, and for the different values of angular monentum of these particles.

The usefulness of this approximation can be illustrated in a few examplest the average partial width for the emission of a neutron with $l=0$ is given by:

$$
\begin{equation*}
\bar{T}=C(E) \sqrt{\epsilon_{a}} \tag{33}
\end{equation*}
$$

which is ossentially proportional to the square root of the outgoing neutron energy in the region in which (31) is valid.

The average cross section over neighboring lovels for the capture of snutrons can be obtained from (16):

$$
\begin{equation*}
\sigma_{c}=\frac{e \pi^{2} \lambda^{2}}{D} C(E) \sqrt{\epsilon_{a}} \sim \frac{C(E)}{V_{a}} \tag{34}
\end{equation*}
$$

This relation shows the well known $1 / v$ law for the capture cross section of slow s-neutrons $(\lambda=0)$.

The pertial width for the emission of neutrons with $\ell \neq 0$ is given by

$$
\bar{T}=C(E) \sqrt{\epsilon_{a}} T_{a l}(E)=\frac{C \sqrt{\epsilon_{a}}(k R)^{2 l}}{\left[(2 l-1)^{2}(2 l-3)^{2}\right]} \text { for } k R \ll 1
$$

It is thus proportional to $\epsilon^{\ell+\frac{1}{2}}$ for small onergies. The emission 236 probabilities of charged particles have the transmission coeffioient $T_{a l}(\sigma)$ as the domineering factor.

The factor C appearing in the neutron widths cannot bo determinod but an upper limit can be set: we know from (17) that $\bar{T} / D \leq 1 / 2 \pi$ for neutrons ($l=0$). Since (33) should be valid up to about E~N I Mev we obtain

$$
c \sqrt{\epsilon} \leq D / 2 \pi \text { for } \epsilon \sim 1 \text { liev }
$$

The exporimentally determined values (see Section 5), indicate that C is not much smaller than $D / 2 \pi$, if the energy units are choosen in lhev's.

So far the radiation of the nuclear states has been neglected. It introduces another additional width Γ_{Γ}^{n}, which wo call the radiation width. The tatel width Δ^{n} of the level is then givon by

$$
\begin{equation*}
\Delta^{n}=\Gamma^{n}+\Gamma^{n} \tag{35}
\end{equation*}
$$

The radiation width consists of a sum of partial widths $T_{r}^{n} p$ corresponding to transitions to special luvels ρ below n :

$$
\begin{equation*}
\Gamma_{r}^{n}=\sum_{\rho} \Gamma_{r p}^{n} \tag{36}
\end{equation*}
$$

$U_{r \rho}^{n}$ is the matrix element of the optical transition from n to ρ.
Tho spectrum of the nucleus can be divided a) into a "stable" region from 0 to \bar{E} where the lovols emit light quanta only and the width is merely due to radiation; b) in a "resonance" region above $\overline{\mathcal{F}}$ whore the statos are able to emit particles, but still are anart from each other by more than their widh so that they form a discrete'spoctrum. The widths Γ^{n} increase with higher axcitation enorgy. There are more partial widths contributing to the sum in (18) and overy single partial width incroases with higher onergy of the particle umitted. Wo so obtain a third region, the "continuous" region, in which the level width is equal to or larger then the level specing.

LECTUIT SERIES ON NUCLEAI PHYSICS

Fifth Series: The Statistical Theory of Nuclear Reactions
Lecturor: V. F. Woisskopf

LRCTURE XXXV. Resonance Processes

A) The Breit-Wigner Formule

The cross sections of nuclear ruactions, which wero calculated from the emission probabilities in Section XXXIII, were defined as average cross sections over a rogion of energy of the incoming particle, which includes many resonance levels. This section is devoted to the study of the cross section as a function of energy, if the energy is sherply defined. In this cass wo expoct resonance phenomena as described qualitatively in Section XXXII.

We first investigate the enorgy relations: if ϵ_{α} is the onergy of the incoming particle, the onergy $\mathcal{E}_{\mathcal{B}}$ of an emitted particle is givon by:

$$
\begin{equation*}
\epsilon_{\beta}=\epsilon_{\alpha}+B_{a}-B_{b}+E_{\alpha}-E_{\beta} \tag{38}
\end{equation*}
$$

whore E_{α} and $E_{\mathcal{S}}$ are the excitation energios of the initial and final nucleus respectivoly, and B_{a} and B_{b} are the binding unergies of a to the initial nucleus or b to the final nucleus respoctively. The onorgy ϵ_{β} is thus dependent on ϵ_{α} and is in general not equal to the energy ϵ_{β}^{n} of a particle b mitited by any of the excited states n of the compound nucleus, excopt if ϵ_{α} is just in the middle of a resonance. This is the case if $\epsilon_{a}+B_{a}$ is just equal to the excitation energy of the compound state n.

The expression of the cross suction of a nuclear reaction in the resonance region has been developed by Breit and Wigner ${ }^{1}$ and later by Bethe and 1) Breit and Wigner, Phys. Rev. 42, 519 (1936)

Pleczek ${ }^{2}$, by Peierls and Kapur ${ }^{3}$) and by Siegert ${ }^{4}$). In the following it is not 238 attempted to give an exact derivation of it. The analogy to the resonance of derped oscilletors is used, to make the main features of the formula as plausible as possible.

We first introduce the concept of effective widths. According to (29) the partial widths β^{n} depend on the energy of the outgoing particlo by moans of the factor $K_{\beta}^{n} T_{b}\left(\epsilon_{\beta}^{n}\right)$ since the energy ϵ_{β} of the outgoing particle in a nuclear reaction is not necossarily equal to $\epsilon_{\beta}{ }^{n}$, it is usoful to introduce the offective width $\mathcal{\beta}^{n}\left(\epsilon_{\beta}\right)$ which is a function of ϵ_{β}. It is obtained from the actual width by teking the energy dependent factor at the value ϵ_{β} instead of $\epsilon_{\beta}^{n}:$

$$
\begin{equation*}
\gamma_{\beta}^{n}\left(\epsilon_{\beta}\right) \cong \Gamma_{\beta}^{n}\left(\epsilon_{\beta} / \epsilon_{\beta}^{n}\right)^{\frac{1}{2}} \frac{T_{b}\left(\epsilon_{\beta}\right)}{T_{b}\left(\epsilon_{\beta}^{n}\right)} \tag{42}
\end{equation*}
$$

This rolation is not quitu exact because of the slight energy dependence of the other factors in (28), nanely $\left|\Phi_{\beta}(R)\right|^{2}$; however, the resonance region does not extend furthor than the rugion of validity of (31), in which $\left|{\underset{N}{\beta}}^{n}(R)\right|_{\text {is }}^{2}$ not onergy dependent.

Let us assume that the energy of an incoming particle a lies within an interval d which is much smeller than the width of a rusonanco level of the compound nucleus. Furthormore we assuno that the enorgy \mathcal{E} is noar to the energy ϵ^{n} at which the particle would be at the maxinum of a resonance ${ }^{5}$), and comparatively far awey from othur rusonances so that we do not need to consider the Influenee of othor luvels. The cross section $\sigma(\epsilon)$ as a function of the energy ϵ has than the cheracteristic resonance dopendence:
2) Buthe and Placzuk, Phys. Rev. 51, 450 (1937).
3) Puierls and Kupur, Hoy. Soc. Proc, 166, 277 (1938).
4) Siegurt, Phys. Rev. 56, 750 (1.939).
5) $\epsilon^{\boldsymbol{n}}$ should, in accordance with section XXXIV, be writton $\epsilon_{\alpha}{ }^{n}$, and ϵ should have an indox E_{a}. In this section we omit this index in the energy of the incident particle and ϵ^{n} the energy at which it is at rusonanc with the n level.

$$
\begin{equation*}
\sigma(\epsilon)=F(\epsilon) \frac{\delta(\epsilon)}{\left(\epsilon-\epsilon^{n}\right)^{2}+[\delta(\epsilon) / 2]^{2}} \tag{43}
\end{equation*}
$$

where $\delta(\epsilon)$ is the effective total width of the resonance, which is the sum of all effective partial widths:

$$
\begin{equation*}
\delta(\epsilon)=\sum_{\beta} \gamma_{\beta}\left(\epsilon_{\beta}\right) \tag{43a}
\end{equation*}
$$

ϵ_{β} is the energy (given by (38)) with which the particle is emitted. The sum is taken over all possible index triples $b_{\beta} \boldsymbol{\ell}^{\prime} . F(\epsilon)$ is a slowly varying function of ϵ, which we determine later. If e is in resonance, $\epsilon=\epsilon^{n}$, the energies ϵ_{β} are the same as they would be if the particles wore omitted by the resonance level n independentiy. Thus $\delta\left(e^{n}\right)=\Delta^{n}$.

Expression (43) can bo understood by analogy to the case of forced vibrations of a damped oscillator with a proper frequency \boldsymbol{V} under the influence of a periodic force F cos $v t$ with a frequency V. The denping is assumed to be due to a froquency dependent friction force $-m \delta(v) x$ (x is the displacement of the oscillator). One obtains for the displacement x :

$$
x=\frac{F}{2 m v_{0}}\left(\frac{1}{\nu_{0}-\nu+1 \delta / 2}+\frac{1}{\nu_{0}+\nu-1 \delta / 2}\right) e+v t(44 \mathrm{~N})
$$

And for the average energy absorbed by the oscillator per unit time:

$$
\begin{equation*}
\frac{d E}{d t} \frac{1}{4 m} \frac{F \delta(v)}{\left(v-v_{\delta}\right)^{2}+[\delta(v) / 2]^{2}} \tag{4.46}
\end{equation*}
$$

In this expression, terms smaller than of the ordar $\left(\nu_{0}-\nu\right) /(\nu+\nu)$ nere neglected (sucond term in (44a)). The time dupendonce of the free vibration of this oscillator would be $x \sim \cos \nu_{0} t e^{-\delta(\nu) t / 2} ;$ its intonsity in this case ducays exponontially with the decay constant $\delta\left(\nu_{0}\right)$.

From this we cen understend uxpression (43) for the cross section, by ruplacing in (44b) frequencies by unurgius. $\delta(\nu)$ gous over into the offective total width $O\left(\epsilon\right.$) of the level, whosu velu for $\epsilon=\epsilon^{n}$ is also (aftur division by $\hbar_{\text {) }}$ the actual decey constent of the level, just ns $\delta\left(\nu_{0}\right)$ is the ducay
constant of the intensity of the oscillator. The function $F(\epsilon)$ in (43) is an analogue to a frequency dependent force F, acting on the oscillator.

We deternine the function $F($) in (43) by comparing this cross section with its inverse: the decay of the compound nucleus with an emission of a particle with the energy \mathcal{E} within the small interval $d \in$. The probability of this emission $P(\boldsymbol{\epsilon}) d \boldsymbol{C}$ must be proportional to the same resonance factor, which is contained in $\sigma(\epsilon)$, but should give, after integration over the total width of the level, the total emission probability Γ_{α}^{n} (the partial width for the emission of the particle a)

$$
\Gamma_{\alpha}^{n}=\int_{\epsilon^{n}-\Delta \epsilon}^{\epsilon^{n}+\Delta \epsilon} P(\epsilon) d \epsilon
$$

A. is an energy interval large compared to the width. This is fulfilled by
since

$$
\begin{equation*}
P(\epsilon) d \epsilon=\gamma^{n}(\epsilon) \frac{\delta^{n}(\epsilon) / 2 \pi}{\left(\epsilon-\epsilon^{n}\right)^{2}+(\delta n / 2)^{2}} d \epsilon \tag{45}
\end{equation*}
$$

$$
\gamma_{\alpha}^{n}(\epsilon) \frac{\delta(\epsilon) / 2 \pi}{\left(\epsilon-\epsilon^{n}\right)^{2}+\left(\delta^{n} / 2\right)^{2}} d \epsilon \approx \alpha^{n}\left(\epsilon^{n}\right)=T_{a}^{n}
$$

This relation is right if $T_{a}^{n}(\epsilon)$ and $\delta^{n}(\epsilon)$ are sufficiently slowly variable over the resonance region.

It also would be fulfilled by putting the actual partial width Γ_{α}^{n} instead of the effective partial width $\gamma \boldsymbol{\alpha}(\epsilon)$ as the first factor in (45). It is evident, however, fron the derivation of the energy dependence of $\gamma_{\alpha}^{n}(\epsilon)$ in (42) that the emission of a particle with an energy ϵ is proportional to $\boldsymbol{q}^{n}(\epsilon)$ rather than to T^{n}.

Ve now apply the expression of detailed balance (16) to calculate the function $F(E)$ in (43) from (45). Since the end state of the capture process has the weight unity in this case, $\boldsymbol{C O}_{C}(E) d E$ must be replaced in (16) by unity. We obtain instead of (16):

$$
P(\epsilon) d \epsilon=\frac{\sigma(\epsilon)}{2 \pi^{2} x^{2}} d \epsilon
$$

where X is the wave length corresponding to \mathcal{E}. From this we get by using (45):

$$
\begin{equation*}
\sigma(\epsilon)=\pi x^{2} \frac{\gamma_{a}^{n}(\epsilon) \delta^{n}(\varepsilon)}{\left(\epsilon-\epsilon^{n}\right)^{2}+\left[\sigma^{n}(\epsilon) / 2\right]^{2}} \tag{241}
\end{equation*}
$$

This is the cross section for capture of the particle a regardless what reaction should follow. Since the 8^{n} in the numberator of (46) was written in (43a) as a sum of the partial widths belonging to all processes which can be initiated by the capture of a, it is self evident that the cross section for a special nuclear reaction $\alpha \rightarrow \beta$ is given by:

$$
\begin{equation*}
\sigma(\alpha, \beta)=\pi x^{2} \frac{\gamma_{\alpha^{n}}(\epsilon) \gamma^{n}(\epsilon)}{\left(\epsilon-\epsilon^{n}\right)^{2}+\left[5^{n}(\epsilon) / 2\right]^{2}} \tag{47}
\end{equation*}
$$

If the resonance energies ϵ^{m} of several levels are near enough to ϵ, the different contributions add up coherently: the amplitudes and not the intensities must be summed. One then obtains an expression, whose form again can be understood from the analogy with a forced oscillation. The amplitude according to (44a) is proportional to the complex factor $1 /(z-z+i \not y)$ which here appears in the form $1 /\left(\varepsilon-\epsilon^{n}+i \delta^{n} / p\right)$.

The cross section of on $\left(a, l, b \beta l^{\prime}\right)$ reaction with the initial particle a incident with an energy E and a given angular momentum ℓC upon the initial nucleus in the state α, resilting in an emission of b with an angular momentum ℓ^{\prime} and with the final nucleus in β, is given by:

Here ϵ_{n} are the resonance valuest $\epsilon_{n}=E_{n}-B_{n}-E_{\alpha} \quad$. En is the energy of the excited state n of the compound nucleus acting as intermediate state, E_{α} is the energy of the state α of the initial nucleus; $\varnothing_{\alpha \beta}$ is the phase difference of the initial and the final state and it vanishes if $\alpha=\beta$. $\eta_{a \alpha}^{n}$ and $\gamma_{L} \dot{\beta} \ell$ are the effective partial widths of n, corresponding to the emission of a and b respectively, with the residuel nucleus left in α or β : $f(\epsilon)$ is a slowly varying function of ϵ_{a} which is small compared to the resonance contributions of the first tern. It is introduced to replace the contribum tions of the second term in the amplitude (44a) and to include the contributions
from the continuous region far of the resonance which is not included in the first term.

The energy dependent perts of the wdiths are common to all the terms in the sum over intermediate states n and one can write according to (42)
k_{a} and k_{b} are the wave numbers corresponding to the energies ϵ_{a} and ϵ_{b} of the particles a or b respectively. Here the phases \varnothing_{a} and \varnothing_{β} have been incorporated in the Φ.s. $f^{\prime}(\epsilon)$ is the same as $\mathcal{E}(\epsilon)$ after division by the factors taken out. The numerator of the resonance terms consists here only of nuclear magnitudes independent of the energies of the particles.

In formulas (48) and (49) all states α, β, n of the nuclei are considered as of wight unity. If some of these states are degenerated it is sometimes nore useful to sum over all substates. The total cross section is the sum of all cross sections from every single substate of α to every one of β. In case of angular momentum degeneracy these sumations can be performed and Bethe and Placzek have derived the following expressiona:
tial state A. The initial and final states are no denoted with capital letters (A, B) Instead of the greek letters (α, \mathcal{O}) in order to indicate that they conprisa all magnetic substates. The compound state is called $c, \ell \ell^{\prime}$ and j, j^{\prime} are the orbital and the total angular momentum of the incident or enitted particle respectively; J is the total angular momentum of incomine particle and initial nucleus and therefore also the total spin of the compound state C, $\Phi_{a l} \backslash \mathbb{A}$ is the amplitude Φ of the compound state C in respect to the emission of the particle a, with orbital and total angular momentum l and j and with the residual nucleus in A. It is evident that $\Phi_{a \ell J A}^{C}=0$ unless $\left.|j+1|>j\right\rangle|j-1|$ The sumnation sign \sum^{J} indicates that the sums should be taken only over states 0 with the spin J. The sumation over J is outside of the absolute square signs

243
Which means that the contributions to the scattering with different total angular momentum do not interfere.

In most cases in which (50) is applied, the contribution of one corapound level only is essential. The others are far off resonance. We then obtain

Here $\chi_{1}=\sum_{\text {L }} \overbrace{A}$ is the partial width of C for the emission of a with a residual state A irrespective of the spin and of the momentum of the emitted particle 6 . All substates have, of course, the same partial width, because of the spatial symmetry.

The formulas can be extended to include also radiative phenomena such as the emission of light quanta by the nucleus instead of a particle b in a nuclear reaction. The cross section for a nuclear reaction in which a particle a is incident upon a nucleus in the state α and a 1 light quantum is emitted which leaves the compound nucleus in the state ρ is given by:
$\sigma(a \alpha, r p)=\left.n \lambda_{a}^{a} \sum_{n} \frac{\left(\alpha^{n} \alpha^{n}\right)^{1} e^{i \phi n} \frac{\left(6 e^{n}\right)-10^{n}}{e}}{(f(e)}\right|^{2}$
Ir n the effective partial width for radiation. It differs from the actual partial radiation width Tr_{ρ} by a factor $\left(\frac{2}{\rho} / \rho^{n}\right)^{2 \ell+1}$ where ν^{n} is the frequency which would be emitted if the state n actually went over to the state ρ by a radiative transition, and where $2 p$ is the frequency which is emitted in the radiative capture ending in the state $p l$ In the exponent depends on the multipole character of the emitted radiation; it is $1,2, \ldots$ for dipole or quadrupolo (etc) radiation.

If only one compound level is important, the total cross section for
radiative capture irrespective of the level ρ is given by

$$
\begin{equation*}
\sigma(a, A, r)=\pi X_{a}^{2} \frac{2 J+1}{(2 s+1)(2 i+1)} \frac{2 A_{1} p_{r}^{c}}{\left(\epsilon_{a}-\epsilon^{n}\right)^{2}+(\delta)^{2}} \tag{53}
\end{equation*}
$$

6) In general, $1 f$ and A have angular momenta different from zero, different values of \mathcal{L} are possible. Assuming, for example, $d=3 / 2,1=1$, a particle with spin 2 can $b e$ emitted with $l=0,1,2,3$.

B) Discussion of Resonance Phenomena

A few general conclusions can be drawn from the one-level forrala (47).
If there is only one enission procoss possible from the compound nucleus, which then necessarily is the reemission of the absorbed particle, wo can put $\delta^{n}=\chi^{n}$ and we get for the only possible process, the elastic scattering of a:

$$
\begin{equation*}
\sigma(\alpha, \alpha)=\pi x^{2} \frac{\left(\alpha^{n}\right)^{2}}{(\epsilon-)^{2}+\left[\alpha^{n}(\epsilon) / e\right]^{e}} \tag{54}
\end{equation*}
$$

The value at resonance is $4 \pi X$, and this is the maximum possible value for elastic scattering.

If there is one competing process, say the emission of b, we obtain $\theta^{n}=2^{n}+y^{n}$ and the elastic scattertne ${ }^{2}$ s then given by

$$
\sigma(\alpha, \alpha)=\pi x^{2} \frac{\left(\alpha-\epsilon^{n}\right)^{2}+\left(\gamma \alpha^{n}+\gamma_{B}^{n}\right)^{2} / 4}{(\epsilon}
$$

which is off resenance, $\left.\left(\epsilon-\epsilon^{n}\right)\right\rangle>\Delta^{n}$ the same as (54) but, in resonance, weaker than (54). The exdstance of a second omission possibility dininishes the elastic cross section only near resonance. The cross section $\sigma(\alpha, \beta)$ for the emission of b is given by (47), and it is eesily seen that the moximun cross section possible in resonance in this case is $\pi \chi^{2}$ which is assumed if $\frac{\gamma}{\beta}$

We now apply the resonance expressions to the case of slow neutron
reactions. There we assume that the angular momentum of the incoming particle is zero. There are four reactions possible with slow neutrons: 1) elastic reemission of the neutron; the energy is not sufficient to leave the nucleus excited by an inolastic collision, 2) Emission of a $\boldsymbol{\gamma}$-ray, in which case the noutron is purmanently captured, since; aftor enission, the excitation energy of the compound nucleus falls bolow the binding energy of the neutron. 3) Enission of an a-particle, 4) Emission of a large fregment; with very heavy nuclei the fission of the nucleus can be induced by slow neutrons.

The onission of a proton is impossible as can be seen by the following
consideration: if the proton would be emitted with higher energy than the one of the neutron, the energy of the residual nucleus would be lower than tho one of the initial nucleus, and the two nuclei would be isobars differing by ons unit of charge. Thus the initial nuclous would bo β-unstable, which is impossible. If the emitted proton had equal or loss energy than the neutron it would not be able to penetrate the potential barrier.

We first assume that there is only one level sufficiently near to the onorgy to which the compound nucleus can be excited by the neutron. We then apply (51) and use (33) for the partial width $\gamma_{a A}^{C}$ of the neutron. Furthernore, $J=i \pm \frac{1}{2}$ since the neutron can contribute only its intrinsic spin, $s=\frac{7}{2}$, and we get

$$
\sigma(a, b)=\pi \lambda^{2} \frac{1}{2}\left(1 \pm \frac{1}{2 i+1}\right) \frac{c \sqrt{\epsilon} q_{b}^{C}}{\left(\epsilon-c_{C}\right)^{2}+\left(\delta^{c} / 2\right)^{2}}
$$

The cross section for the elastic scattering of slow neutrons is then:

$$
\begin{equation*}
\sigma_{e l}=\pi \frac{\hbar^{2}}{2 m} \frac{1}{2}\left(1 \pm \frac{1}{2 i+1}\right) \frac{c^{2}}{\left(6-\epsilon_{C}\right)^{2}+(\sigma C / 2)^{2}} \tag{55}
\end{equation*}
$$

which is obtained by putting $\chi_{G B}^{C}=C \sqrt{\epsilon}$ also according to (33).
The cross suction for emission of a light quantum or another particle
(both are denoted by b) is givon by

$$
\sigma(a, b)=\frac{\pi K^{2}}{2 m_{c}^{2}}\left(1 \pm \frac{1}{21+1}\right) \frac{c \eta_{b B}^{c}}{\left(\epsilon-\epsilon_{c}\right)^{2}+(\delta c / e)^{2}}
$$

This cross section shows the characteristic $\epsilon^{-\frac{1}{e}}$ dependence on the neutron ensrgy (the so-called $1 / v$ law). If the width δ^{C} is very large, the $\epsilon^{-\frac{1}{e}}$-factor is the determining factor for tho onergy dependence. This is the case e.g., in the boron ruaction:

$$
n+B^{10}=1 i^{7}+\alpha
$$

where the total width is determinud mainly by the a-emission width. The $a-$ particles are enitted with an enurgy of about 2.7 Mev , and are able to pass above the barrier. The corresponding width \mathcal{R}^{c} is therefore vory large and was found to be about 200 Kev . Thus the boron reaction follows the 1/v law up to energies E small compared to 200 Kev.

If the only reaction possible aftur capture of a neutron is the emission
of a light quantum, (as in host casos of heavy nuclei) the capture cross section for a slow neutron is given by:

$$
\begin{equation*}
\sigma_{\text {capture }}=\frac{\operatorname{ch}^{2}}{2 \operatorname{m} 1^{2}}\left(1 \pm \frac{1}{2 i+1}\right)\left(\epsilon-\epsilon_{c}\right)^{2}+\frac{C T_{r}^{C}}{4}\left(c \sqrt{\epsilon}+T_{r}^{C}\right)^{2} \tag{56}
\end{equation*}
$$

This expression is right if only one rosonance level determines the process. It must be generalized by means of (52) for the case of soveral resonances near \in.

C) Experimental Material

A number of resonance phenomena have been observed with bombarduents of light nuclei. Staub and Tatel ${ }^{7}$) have observed a strong resonance in the elastic scatturing of neutrons by helium. Thus resonance could be assigned to a doublet level, excited by p-ncutrons and was analysed by means of a formula similar to (54).

Herb and collaborators in wisconsin ${ }^{8)}$ and Tuye ot a1 ${ }^{9}$ have found resonances by musuring tha emittod γ ray intonsity as a function of the energy of the bombardud protions on LI, F, AI. Tho $\boldsymbol{\sim}$ mrays are oithor emitted by the compound nucleus itself or by the oxcited final nucleus which is left over after onission of an C-particlo (the latter possible occurs in F). The obsurved 7 -ray intensity shows sharp maxima if the energy of the bombarding protons is such that a level is excited in the compound nucluus. Thus the resonancos give A plcture of the spectrum of the conpound nucleus above the proton binding onergy. In Li and F only thoso levels aro found which, beceuse of selection rules, canot umit an α-particle. The levels that emit a-particles are so broad thet no resonance can bo observed. In Al, however, the C-enission is made 10 ss probable by tho highor barrier, and therefore, also ocomitting levols show 7) Staub and Tatul, Phys. Rev. 28, 820 (1940).
8) Hurb, Korst, McKibben, Phys, Rov. 21, 691 (1937). Burnet, Herb, Parkinson, Phys. Hev, 54,398 (1938). Plain, Herb, Hudson, Warron, Phys. Tev. 57, 187 (1940).
9) Hafstad, Heydenburg, Tuvo, Phys, Juv. 50, 504 (1936).
resonance. The most striking result of a comparison between the three elements is the greater level density in the haver nuclei. The average level distance is about 500 Kev in $\mathrm{Li}, 200 \mathrm{Kov}$ in F , and 30 Kev in A1. The observed widths of the levels are a sum of particle and radiation widths. They are 11 Kev in Li, about 8 Kev in F and of tho order of one or two Kev in Al .

The level density in $A l$ is so high that one would not expect to be able to find resolvable resonances in elements much heavier than Al with charged particle beans. Resonances in heavier nuclei were found with slow neutrons only. The formula (56) for the capture of slow neutrons can then be tested, and the different magnitudes: $\epsilon_{C} ; \delta^{C}$ and C; can be determined. In this case, the nu tron width $C \sqrt{\epsilon}$ is usually much smaller then the radiation width. We therefore put $\delta^{C} \approx p_{r}^{C}$ and the formula (56) reduces then to:

$$
\begin{equation*}
\sigma_{\text {capture }} \sigma_{0} \frac{\left(\epsilon_{c} / \epsilon\right)^{\frac{1}{e}}}{1+\left[\left(\epsilon-\epsilon_{C}\right) /(o c / 2)\right]^{2}} \tag{56a}
\end{equation*}
$$

Where σ_{0} is the cross section at resonance:

In the second expression the energy ϵ_{C} is expressed in uv:
In this formula the Doppler effect hes ben neglected. Because of the thermal motion of the nuclei, the relative energy botwon neutron and nucleus is not exactly equal to the neutron energy. The relative unorgy \in is distributed around the neutron energy E with a Gaussian distribution $; 1 / \sqrt{\operatorname{R\pi } K} \exp \left[-(E-\epsilon)^{2} / 2 k^{2}\right.$ where the Doppler width K is given by

$$
k=2(m \in k T / M)^{\frac{1}{2}}
$$

and m / M is the ratio of the masses of the neutron and the nucleus.
Since (56a) gives the dependence of $\sigma(\epsilon)$ on the relative energy, the cross suction as a function of the actual energy it is given by:

$$
\begin{equation*}
\sigma(E)=\frac{1}{\sqrt{2 \pi k}} \int_{-\infty}^{+\infty} \sigma(\epsilon) \exp \left[-(E-\epsilon)^{2} / e k^{2}\right] d e \tag{57}
\end{equation*}
$$

If the Doppler width K is shall compared to the natural lino width 8^{C}, the Doppler effect is negligible and (56a) can bu used with E as the actual neutron
energy If K is large compared to δ, the shape of the absoxption ine near 248 its maximum is given entirely by the Doppler effect and wo get:
$o(E) \approx \frac{\pi x^{2}}{\sqrt{2 \pi K}} \frac{c \sqrt{e}}{K}\left(1 \pm \frac{1}{2 i+1}\right) e^{-\left(E-\epsilon_{c}\right)^{2} / e k^{e}}$
Howover if the energy is sufficiently far away from rosonance, $\in-\in>K$ σ is egain given by (56a), since (560) falls off exponontially wheruas (56a) falls off only quantratically with ($\epsilon-\epsilon_{c}$).

The following nethods are used to determing the cherecteristic nagnitudes ϵ_{C}, C and Δ^{C} of a resonance level:

1) Thu direct nethod of reasuring the absorption of, or the radionctivity \cdot produced by, a monochromatic neutron bean with veriable enorgy. Experiments with monountrgetic nuutrons have been first performed by Alvarez by muans of a wodu lated neutron source and by a suitably nodulated amplifier, which registars only noutrons which have arrived at the counter in a specifiud tire intorval aftor their production. Bechur and Baker have improved this nethod and wure able to uxtund the range of enurgies invustigated from zero to about 5 uv.
 the noutrons. Tho quentity measured in an absorption nuasurenent is actually the sun of occaptur and the scatturing cross section. For low energius and nuar rosonance, the scatturing cross suction can bu neglucted conperud to $\sigma_{\text {capture }}$.
2) The boron absorption mothod. The boron absorption mithod is used for the deturmination of the onorgy of the resonance levils, Advantege is takon of the $1 / v$-dependence of the cross section of the (na) process in boron, which is responsible for the absorption of nutrons in boron. The principle of this method consists of the following: a neteriol is activatud by ebsorption of nutrons from e buan contaning a continuous spoctrum of noutron energios. The reduction of the aetivation is nuasured aftur covering the meturial with boron. This ruduction is proportional to the absorption in boron and ther fore proportional to $\epsilon_{C}^{-\frac{1}{2}}$ if ϵ_{C} is the energr of the nutrons at resonance. As shown befors, uvory maturial captures to a curtain uxtunt very slow neutrons of thormal
energy. The thernal neutrons can ba eliminated by covering the maturial with cadmiume The value of ϵ_{C} can be obtained by measuring the reduction of the activity by boron of the cedmium coverod material in which only the resonence neutrons ere neasured and by comparing this with the difference in reduction if the cadmun is ronoved. Tho latter diffuronce is due to the absorption of thernal nutrons in boron. We than obtain $\epsilon_{c} / \epsilon_{t h}=\left(k_{r e s} / k_{t h}\right)^{2}$ whor $k_{\text {res }}$ and $k_{\text {th }}$ are tho absorption coeffleionts of the resonence nutrons and the thermal noutrons respetivoly $E_{t h}$ is a suitably chosen average enorgy of the thomal neutrons which is, for boron absorbers, given by $\epsilon_{t h}=(\pi / 4) k t$

The boron nuthod can elso bo used to ascortain that essentially one level formula ma safuly be applied. If this is true, the reduction of the activity in the cedmilu covered matorial should dupend on the thickness d of the boron absorber acording to an exponential function $e^{-k d}$ If two or more levels contribute with similer intonsity, the dependone on d would be a sun of exponontiak. Results on sinvur, for example, show a behevior of that nature.
3) The self absoritinn nethod The absorption of n nutron bean with a continuous spuctrum over the linu width is moesurud as a function of thicknoss d of one absorbur, with a radioective indicator of the same naturial. The thermal neutrons ar runoved by codnium shiolding. The nesarured absorption starts with an exponuntial dopendence on d and goes ovur into a \sqrt{d} dopendunce when the inner parts of the line are no longor contributing to an additional absorption, Whioh happens when all the intensity in the middle of the tine is absorbed. The evaluation of this depandonce givus a neans to doterninu σ_{0} the cross suction of copture at the maximu of rusonance, If ther is only on luvol which matnly contributed.

Lut us assume the intensity I_{0} of the neutron bun is musurud by the Indicator without any absorbir. Io is ruduced to I by an absorbor of the same matoriel as the indicator and of a thicknoss d. For thin ebsorbers the retio I / I_{0} is given by $I / I_{0}=$ exp $\left(-n \sigma_{S} d\right)$ whore n is the number of atons pur on and

$$
\sigma_{s}=\frac{\int \sigma_{C}^{2}(\epsilon) d \epsilon}{\int \sigma_{C}(\epsilon) d \epsilon}=\frac{1}{2} \frac{\sigma_{0}}{W} \text { for } n \sigma_{s} d \ll 1
$$

Here σ © is dufined in (56b) and N is a function of thu ratio $\eta=\Delta / k$ of the netural width and the Dopplur width:
W is undity for $\delta^{C}>K$

$$
\begin{array}{ll}
W=1+\left(1 / n^{2}\right)+\ldots \text { for } n>1 \\
W=\sqrt{2} / \pi & 1 / n)+1+\ldots \text { for } \eta<1
\end{array}
$$

If the absorption in a vury thick layor is masured by an indicator of the seme material, the middle of the rusonance is complotely absorbed and oniy the wings of the line are masured. In the wings the Doppler effect is no longur important and the intunsity is given by:

$$
\begin{equation*}
1 / l_{0}=1 / \sqrt{\pi \sigma_{0} n d}, \text { for } n \sigma_{0} d \gg W \tag{58}
\end{equation*}
$$

Relation (58) is correct if σ_{0} nd $\gg W$, which nuans that the anergy regions affected by the Dopplur effect are completuly ebsoriod.
4) The activity mothod, The activity produced by a neutron beam of given spectrum is measurod, aftur shielding off the thurnal neutrons. Tho neutron spuctrum is usually obtained by slowing down high energy neutrons in light meterial as carbon or paraffin, me intensity pur onorgy inturval $d \in$ is then proportional to de/e.
This method gives a munsur of

$$
\int \frac{\sigma(\epsilon)}{\epsilon} d \epsilon=2 \pi \sigma_{0} \frac{\Delta^{c}}{\epsilon_{c}}
$$

independent of the Doppler uffuct.
5) The muasurume of the thernal absorption cross suction. The thurnal absorption cen bu usud for the determination of luvel constents only if the energy of all higher luvels is large compared to the lowest one, and if no levul bulow zero unergy is of eny influence. The lowest level nust be low onough so that the absorption at thermal enurgius is taking placu in the "wing" of the rusonane tine.

In case the one-level formula is applicable, wo obtain:
from method 1): $\epsilon_{C}, \Delta^{c}, C$
from method 2): ϵ_{C}.
from method 3): σ_{0} if $\Delta^{c} \gg \mathrm{~K}$ or from thick leyyurs, $\sigma_{0} \Delta^{c}$ if $\delta^{c} \ll K$
from method 4):
from method 5): $\sigma_{t m}=\pi X_{t h} \frac{c \sqrt{\epsilon_{t h}}}{\epsilon_{c}^{2}}$
Hour $X_{\text {th }}$ and $\epsilon_{\text {th }}$ ru the wave lengths and the energies for thermel anergies. Thus the throe unknown quantities $\epsilon_{c} C, \Delta^{C}$ cen bu determined. Inconsistm mencius within the five methods cen bu due the influence of other levels. $O_{\text {in }}$ can bu unduly small because of the existence of a nugative level, or higher because of the contribution of other luvels. methods 3) and 4) may give too large values because they include the effect of higher levels.

A table of the cheracturistic values for som levels of different olemints is given below. Only elements ar u included whore the evidence seems to bo not too contradictory. The numbers in parenthesis at the refurunces indicate the methods used, as listed previously.

In Table I, $\quad C^{\prime}=\frac{1}{2}\left(1 \pm \frac{21+1}{}\right) C$. The plus or minus sign refers to the cases where the spin of the neutron is added to, or subtracted from, the spin of the initial nucleus, The value of Δ^{C} in as cannot be detrained because the Doppler width in this case is dominant.

The radiation width, Γ_{r} which, th these cases, is practically equal to the total width Δ^{C}, is very nearly equal in all cases. It shows unusually Little fluctuation. This relative constancy is connected with the fact that represents a sum of many partial widths corresponding to radiative transitions to a great number of lower states. The fluctuations of single transition probebilitius ere averaged out. The values of C! show somewhat greater fluctuations, They represent a single transition probability and may dupont more critically on the propertius of the individual level.

The values C' sean to fulfill the condition (36) fairly well. The value
$C \sqrt{\epsilon}$ for $\epsilon \sim 1$ Lev is botwen 0.2 to 0.7 ev. The resonance leve1 density at that enorgy ought to be larger than etce e which 140 between 12 and 4.5 uv for the elemuts in Table I. Fron all thet we know, it is of this ordor of ragnitude (see XavI) and this proves thet 0 is noar to the largest value which tt is allowed to assume.

TABLE I

Bombarded Element	Life time of product	$\epsilon_{C}(e v)$	Ref.	Γ_{r}	Ref.	$\epsilon_{\mathrm{n}} \times 10^{4}$	$C^{\prime} \times 10^{4}$	Ref.
As^{76}	27 h	40	$1^{(2,3)}$			32	5	$1^{(3)}$
Rh^{104}	44 sec	0.84	$4^{(2)}$	0.15 0.13	$6^{(3,4)}$ $3^{(3,4)}$	$\begin{aligned} & 1.8 \\ & 1.8 \end{aligned}$	2 2	$3^{3(3)}$
Cd^{117}	3.75 h	0.14	$5^{(1)}$	0.12	$5^{(1)}$	2.5	6.6	$5^{(1)}$
In	54 min	1.0	$5^{(1)}$	$\begin{aligned} & 0.07 \\ & 0.07 \end{aligned}$	$\begin{aligned} & 5^{(1)}(3,4) \end{aligned}$	55	5	$3^{(3)}$
Ir^{192}	19.5 h	~ 1.0	$2^{(2)}$	~ 0.1	$2^{(3,4)}$	~ 2	~ 2	$2^{(3)}$
Au 198	2.7 days	3.5 2.6	$\begin{aligned} & 1^{(2)} \\ & 2^{(2)} \end{aligned}$	0.1	$6^{(3,4)}$	6	3.2	$6^{(3)}$

1)	O. Frisch Det Kg 2 Danske Vid.	Selskob Medd.	XIV 12 (1937)
2)	Jaeckel Phys. 107,	669 (1937)	
3)	Hornborstel, Goldsmith, Mayley	Phys: Rev. 58,	18 (1940)
4)	Horveth, Salant	Phys. Rev, $5 \overline{9}$;	154 (1941)
5)	Baker, Bacher	Phys. Rev. 59,	332 (1941)
6)	Feeny, Lapointe, Rasetti	Phys. Rev. 61,	469 (1942)

LiA 24 (36)
February 11, 1944

TECTURE SERIES ON NUCIEAR PHYSICS

Fifth Series: The Statistical Theory Lecturer: V. F. Weisskopf of Nuclear Reactions

LECTURE XXXVI. NOn Resonance Frocesses

A) General Discussion

If the energy of the incident particle is higher than a certain limit, resonances do no longer occur. This can be due to experimental reasons: the energy cannot be made monochromatic enough to resolve the levels; it can be due to the Boppler effect; the Doppler width reaches, for example, 50 ev for an Incident particle energy of 250,000 ev, if the nucleus is 100 times heavier than the particle; 50 ev is of the order of or larger than the average distance D between resonances for heavy nuclei. Furthermore, at energies of several Mev the actual width of the level reaches the order of level distances. This can be seen in the following way: according to (17) the partial width for the emission of a neutron after leaving the nucleus in a given state, reaches the value $(2 l+1) p / 2 \pi$. If the residual nucleus can be left in several excited states, the corresponding widths add up and give rise to a total width, equal or larger than the level distance D. Thus, even under ideal conditions of a monochromatic beam and zero temperature, resonances disappear at an energy of several Mev's.

In order to compute the cross sections of non-resonance processes, we use Bohr's assumption B (see introduction). The cross section can then be expressed by (2)

$$
\begin{equation*}
\sigma(a, b)=\sigma_{a} n_{b} \tag{2}
\end{equation*}
$$

where σ_{a} is the cross section of the formation of the compound nucleus, and η_{b}
is the relative probability of the emission of the particle b :

$$
\eta_{b}=\bar{\Gamma}_{b} / \bar{\Delta}
$$

Here $\bar{\Gamma}_{b}$ is the partial width for the emission of b irrespective of in what state the residual nucleus is left: $\overline{\Gamma_{b}}=\sum_{\beta l} \overline{\Gamma_{V}} \quad$ averaged over the levels of the compound states excited by $a, \frac{1}{\Delta}$ is the averaged total width.

The partial widths $\overline{\Gamma_{\alpha}}$ (we use again the abbreviated index a; see page 7, part XXXIII) are connected with the cross section σ_{α} of the inverse process: the formation of a compound nucleus by the particle a of angular momentum ℓ and a nucleus in the state α. This relation is given by the expression (16):

$$
\begin{equation*}
\bar{\Gamma}_{\alpha}=\frac{\sigma_{\alpha}}{2 \pi^{2} x^{2}} \frac{1}{\omega_{c}(E)} \tag{16a}
\end{equation*}
$$

The cross section σ_{a} appearing in (2) is $\sum_{l} \sigma_{l} \alpha l$ with α being the ground state of the initial nucleus. Thus we get for (2):

$$
\begin{equation*}
\sigma(a, b)=\sum_{l} \sum_{\bar{l}^{\prime}} \sum_{\beta} 2 \pi^{2 \chi} \omega^{2} \omega_{c}(E)\left(\bar{\Gamma}_{a} \overline{\Gamma_{\beta}} / \bar{\Delta}\right) \tag{2a}
\end{equation*}
$$

where the summation over ℓ and ℓ^{\prime} refers to the angular momentum index in the abbreviated index α or β respectively.

The consistency of the expressions (2), (3), (16), with the resonance formula (48) is shown by averaging (48) over an energy region $\triangle \mathcal{A}$, which contains many resonances. If the level distances are large compared to the widths, this integration is a sum over the contributions of the energy regions around every single level. One then obtains:

$$
\bar{\sigma}(\alpha, \beta)=\frac{2 \pi^{2} x^{2}}{\Delta \epsilon} \sum_{n} \frac{\Gamma_{C}^{n} \Gamma_{\beta}^{n}}{\Delta^{n}}
$$

The sum is extended over all levels within the energy interval $\Delta \epsilon$. This relation is right if the term $f(€)$ in (48) is sufficiently small compared to the resonance contributions. After introducing the average width $\bar{\Delta}$ over neighboring levels, we obtain:

$$
\sigma(\alpha, \beta)=\frac{2 \pi^{2 \lambda^{2}}}{D} \frac{\bar{\Gamma}_{\alpha} \Gamma_{\beta}}{\Delta}
$$

where $D=\left[\omega_{C}(E)\right]^{-1}$ is the average level distance. After sumning over ℓ and ℓ^{\prime}
and β we obtain the same expression as (2a). This shows that expression (2) for a non-resonance reaction is in agreement with the resonance formula in the region in which the latter one is valid ($D>\bar{\Delta}$).

We now proceed to the quantitative discussion of the magnitudes occurring in (2). We make use of the intimate connection between partial widths $\bar{\Gamma}_{\alpha}$ and cross sections which is given in (16a). In some energy regions the cross sections are better known, in others the widths; either magnitude can be used to determine the other. We distinguish three energy regions for the emitted (or absorbed) particle. The characteristic magnitude to distinguish the three regions is K_{a} which is the wave number of the particle near the nuclear surface and which is defined as follows:

$$
K_{a}=i\left[\left(\sigma \not / / \sigma r_{a}\right) / \psi\right]_{r_{a}=R}
$$

K_{a} is equal to K_{a} if there is no barrier. It is imaginary if the energy of the particle is insufficient to pass over the barrier. We compare K_{d} with k_{o} which is the wave number of the momentum $p_{0}, k_{0}=p_{0} / K$, defined in (31). k_{0} is a wave number of the order d, where d is the distance between the nuclear constituents. The regions are defined as follows:
I. High energies: $K_{a}^{2}>k_{0}^{2}$.
II. Low energies: $\left|K_{a}\right|^{2}<K_{0}{ }^{2}$. This region includes all energies near to the one for which it just passes over the barrier or, if there is no barrier, all energies smaller than $\hbar^{2} h_{0}^{2} / \mathrm{cm}$. It includes also energies which are not sufficient to pass over the barrier. In this case K_{a}^{2} is negative. III. Penetration region: $K_{a}^{2}<-K_{0}^{2}$. This includes the cases of penetration of barriers with energies much lower than the barrier height.

In the first region, classical considerations are justified since the wave length of the particles is small compared to the nucleus and of the order or smaller of the distance between constituents. We may therefore assume that every particle that comes to the surface is absorbed. Hence we put $\sigma_{a \alpha} \ell$ equal or nearly equal to its maximum value and get:

$$
\left.\begin{array}{l}
\sigma_{a \alpha l}=\xi_{0}(2 l+1) \pi \lambda_{a}^{a} \tag{59a}\\
\Gamma_{a \alpha l}=\xi(D / 2 \pi)(2 l+1)
\end{array}\right\} \text { Region I }
$$

The second expression follows from (16a). \mathcal{E} is a pure number smaller than unity which goes to unity for high energies and is introduced to take care of the transition regions.

The second energy region is the same region in which condition (31) in Section XXXIV is valid. The value of $\bar{\Gamma}_{a}$ can therefore be obtained from the expression (28) in a simple way. It was shown there that (28) can be written in the form (32):

$$
\begin{equation*}
\overline{\Gamma_{\alpha}}=c(E) k_{a} T_{a}\left(\epsilon_{a}\right) \tag{32}
\end{equation*}
$$

where $C(E)$ is a function of the excitation energy E of the compound nucleus, which is independent of the nature (and angular momentum) of the emitted particle. In case of an s-neutron ($\ell=0, T=1$) this expression should join (59a) at $k_{a}=k_{0}$ and it is therefore tempting to put

$$
C(E)=\xi(D / 2 \pi)(2 L+1)\left(1 / k_{0}\right)
$$

where ξ may be some function of \mathbb{E} only. Since, in the extent of the Region II, E does not vary by much, we may assume that the value of ε is approximately constant in this region and of the order unity as in Region I. We then get:

$$
\left.\begin{array}{l}
T_{a a} \lambda=\xi \frac{D}{2 \pi} \frac{k_{a}}{k_{0}} T_{a}\left(\epsilon_{a}\right)(2 \ell+1) \tag{59b}\\
\sigma_{a} h=\varepsilon \frac{k_{a}}{k_{0}}(2 \ell+1) \pi \lambda_{a}^{2} T_{a}\left(\epsilon_{a}\right)
\end{array}\right\} \text { Region II }
$$

The second equation comes from (16a).
In the third region (high barrier), the wave length χ_{a} will be always so small that the potential energy outside the nucleus does not change appreciably over a distance X_{a}. Thus the WKEcalculation is applicable and it yields

$$
\left.\begin{array}{l}
\sigma_{a a l}=\xi(2 l+1) \pi x^{2} P_{a} \tag{60}\\
\Gamma_{a} a l=\xi P_{a}(2 l+1)(D / 2 \pi)
\end{array}\right\} \text { Region III }
$$

Here P_{a} is the penetration of the barrier, which is, in WKB approximation, given by

$$
P=\exp \left[-\frac{2 \sqrt{2 m}}{\hbar} \int_{r_{1}}^{r_{2}}(V-E)^{\frac{1}{c}} d r\right]
$$

Here r_{1} and r_{2} are the radii between which the potential energy V is larger than the total energy E. By comparison of this with the WKB expression (29) for T_{a} we obtain $\mathrm{P}_{\mathrm{a}}=\left(\mathrm{k}_{\mathrm{a}} / \mathrm{Ka}_{\mathrm{a}}\right) \mathrm{T}_{\mathrm{a}}$. Thus the regions II and III join smoothly.

It is interesting to investigate the Region II by means of the WKB method of approximation. This region is defined by the condition that the wave length of the particle outside of the nucleus is long compared to the distance between the nuclear constituents. If we assume that X is still small enough to assume the potential fields outside the nuclear surface (centrifugal or Coulomb force) as slowly varying, it is allowed to apply the WKB approximation for the wave function from the outside up to the nuclear surface. There however, conditions change abruptly in distances small comparedto X. It seems to be appropriate to assume that, once a particle has penetrated this surface, it will not return without change in energy; in other words, it will have formed a compound nucleus. Thus the penetration process is equivalent to one dimensional problem with a potential energy of the type indicated in Fig. 2. Here a particle comes from the left side over a smooth potential barrier. At $x=0$, the potential abruptly drops to a value which would give to the particle a wave length λ comparable to the wave length inside of the. nucleus, which is of the order of the

Fig. 2
distance between nuclear particles. (We call the corresponding wave number: K .) This region extends to the infinite, so that the particle does not return. If a wave of particles with an energy E (A particles per second) comes from the left, it is partially reflected (even if there is no barrier, because the potential energy changes abruptly at, $x=0$). The current which is not reflected but penetrates to the right (B particles per second) can be calculated easily by WKB method and gives

$$
B=4 A \frac{\alpha}{K}\left[\frac{1}{1+\varnothing / K}\right]^{2} l^{-2 C}
$$

with

$$
C=\frac{\sqrt{2 m}}{\hbar} \int_{x_{1}}^{0}(V-E)^{\frac{1}{2}} d x, \phi=\frac{\sqrt{2 m}}{\hbar}\left(V_{0}-E\right)^{\frac{1}{2}}
$$

where X_{1} is the point at which the potential energy V becomes larger than the total energy E of the particle, and V_{0} is the value of V at $x=0$. B / A is the ratio of the penetrating particles to the incident ones. According to this expression, the cross section for the formation of the compound nucleus is given by the maximum possible cross section, multiplied with B / A :

$$
\begin{equation*}
\sigma_{\alpha}=\pi \times 2(2 l+1) \cdot 4(\phi / K) l^{-2 c} \tag{61}
\end{equation*}
$$

since $\varnothing \ll K$. By using the expression (28) for the WKB form of T, we can write:

$$
T_{a}=\left(\delta / k_{a}\right) \ell^{-a c}
$$

Thus, expression (61) is identical with the formulas (59) if we put

$$
\begin{align*}
& k_{0}=\frac{1}{4} K \tag{62}\\
& \zeta=1
\end{align*}
$$

Hence the limiting wave number k_{0} for the three groups will be somewhat smaller than the reciprocal value of the distance between nuclear particles*). The energy $\hbar^{2} K^{2} / 2 m$ corresponding to the wave number K is of the order of 20 Miev , since the distance between the nuclear constituents is of the order $10^{-13} \mathrm{~cm}$. The energy ϵ_{0} corresponding to k_{0} is then 16 times smaller, and of the order of 1 or 2 Mev . Thus the three energy regions of the incoming particle are defined as follows: *) These conslderations are similar to the ones put forward in a paper by H. A. Bethe, Phys. Rev. 57, 1125 (1940).

Region I: The energy is more than 1 or 2 Mev above the barrier.
Region II: The energy is less than 1 or 2 Mev above or below the bar-
ier.
Region III: The energy is more than 1 or 2 Nev below the barrier,
We now apply these considerations to the calculation of neutron cross sections. The total cross section on for the formation of a compound nucleus by neutrons, is given by $\sigma_{n}=\sum_{\ell} \sigma_{l}$ where σ_{l} is the contribution from the angular momentum $\hbar h$. We first consider neutrons of low energy $\epsilon \ll \epsilon_{0}$ where ϵ_{0} is the energy $\hbar_{1}^{2} k_{0}^{2} / E m$. For values of ℓ for which ϵ is larger or of the order of the centrifugal potential $\hbar^{2} \ell(\ell+1) / 2 \mathrm{~m}^{2}, \sigma_{\ell}$ should be calculated according to the rules (59b) valid in Region II:

$$
\sigma_{\ell}=\xi_{\sqrt{ }}^{\epsilon / \epsilon_{0}}(2 l+1) \pi \lambda^{2} T_{l a}(\epsilon)
$$

$T_{\ell a}(\epsilon)$ for neutrons is given in (27d). For values of \boldsymbol{l}, for which $\left.\hbar^{2} \ell(\ell+1) / 2 m R^{2}\right\rangle \epsilon_{0}$, the conditions of Region III prevail, which would make σ_{l} negligibly small. The neutron cross section σ_{n} is thus given by

$$
\begin{equation*}
\sigma_{n}=\xi \sqrt{\epsilon / \epsilon_{0}} \pi \lambda^{2} \sum_{l=0}^{k_{0} \pi}(2 l+1) I_{l a}(\epsilon) \quad \epsilon \ll \epsilon_{0} \tag{63a}
\end{equation*}
$$

For very small energies only the term $l=0$ contributes,

$$
\sigma_{n}=\xi \pi \lambda^{2} \sqrt{\epsilon \cdot / \epsilon_{0}}
$$

which represents the well-known 1/v-law and is identical with (34).
For high energies $\epsilon>\epsilon_{0}$, we must distinguish three groups of σ_{ℓ} : $\left(\hbar^{2} / 2 m\right)\left[\ell(l+1) / R^{2}\right]<\in=\epsilon_{0}$ characterizes a region, where the energy ϵ is very much higher than the barrier and σ_{l} is calculated by (59a). $\left(h^{2} / \epsilon_{m}\right)\left[\ell(l+1) / R^{2}\right]>\epsilon+\epsilon_{0}$ ζ falls into the Region III; σ_{l} is negligibly small there. The intermediate region, $\left(4^{2} / 2 m\right)\left[\ell(\ell+1) / \kappa^{2}\right] \sim \epsilon$, includes only a relatively small number of ℓ 's, so that the total result will be:

$$
\begin{equation*}
\sigma_{n} \approx \zeta_{0}^{k F}(a l+1) \nabla X^{2}=\zeta \pi R^{2} \quad \epsilon \gg \epsilon_{0} \tag{63b}
\end{equation*}
$$

For high energies the cross section approaches $\mathbb{K} \mathbb{K}^{2}$, since the coefficient ζ should not be far from unity.

Fig. 3 shows the theoretical prediction for the neutron cross section

as functions of the energy ϵ. The energy is given in units of $(\mathrm{kR})^{2}$. The curve B is given by $B=\sum_{l=0}^{K_{b} R}(2 \ell+1) T_{l a}$. This sum converges rapidly for the values of ϵ for which it is plotted so that the upper limit of the sum does not enter. B is proportional to σ, V, and A is proportional to the cross section itself. It is seen, that, with the plausible value for $k_{0} R \sim 3$, the cross section σ_{n} goes smoothly over into its asymptotic value πR^{2}.

For a heavy nucleus of $A \sim 200$, the radius R is near to $9 \times 10^{-13} \mathrm{~cm}$, so that $(k R)^{2}$ is a measure of the energy in units of 250 Kev . Hence we must expect σ_{n} to follow a $1 / \mathrm{v}$ law for low energies up to about 130 Kev and to assume a value near $\pi R^{2} \cong 3 \times 10^{-24}$ above that energy.

The cross section σ for charged particles can be computed as follows: it is given by (60) as long as their energy is appreciably lower than the barrier. The WKB method can be applied to calculate the penetration factor, if the barrier extends over a region which is large enough, so that the potential energy does not change appreciably over one wavelength of the particle. This is the case for higher nuclear charges $(Z>20)$. If the energy is well above the barrier, the expressions (59a) give the cross sections directly, since there is then no penetration factor to calculate. For energies near the barrier, however, the expressions (59b) should be used. The WKB method in this region is no longer reliable, since the remaining barrier is necessarily very low and extends over a narrow region. In the following computations, this region has been left out completely. The validity of the WKB solution, applied at low energies, has been extended up to energies equal to the barrier, where it was joined with the solution valid at energies much higher than the barrier. These two solutions join smoothly at that energy since the WKB expression for the penetrability P of the barrier becomes unity at the barrier. The justification of this procedure lies essentially in the fact that, the barrier heights for different angular moments of the incident particle differ by amounts of the order of 1 Mev , so that, for a given energy of the incident particle, only one or two angular moments lead to a case of a Region
II. Most of the partial cross sections σ_{ℓ} are thus computed correctly ${ }^{*}$).

The cross section for the penetration through the barrier is a very sensitive function of the nuclear radius. The following tables give the values for two sets of nuclear radii, one given by $R=1.5 \times A^{1 / 3}$, the other by $R=1.3$ $\times A^{1 / 3}$. It seems that the second set with its steeper excitation functions, fits better to the experimental material available.

The calculation of η_{t} of expression (2) involves the computation of the $\bar{\Gamma}_{b}$ for all particles b emitted by the compound nucleus. They are given by the sum $\bar{\Gamma}_{b}=\sum_{\mathcal{L \ell}} \bar{\Gamma}_{b} \beta l$ each term of which can be computed from (59a), (59b), (60) with reasonaile accuracy, apart from the factor ζ which does not differ much from unity, If th? final mucleus can be left in many excited states β, the sum can be expressed as è integral and we obtain from (16a):

$$
\begin{equation*}
T_{b}=\frac{1}{2 r_{0}^{2}(E)} \int_{0}^{\epsilon_{b} \max } \frac{m \epsilon}{h^{2}} \sigma_{b}(\epsilon) \omega_{\mathrm{g}}\left(\epsilon_{\mathrm{bmax}}-\epsilon\right) d \epsilon \tag{64}
\end{equation*}
$$

ϵ_{b} mix is the meyimm enorgy the particle b can ohtain (tiat is, by leaving the
 resichat macleus, at the excluation energy $D_{,} \beta$, $\sigma_{b}(E$ is the cxoss gection (summed over ail l) to fom a compound rucleus of exvitation iny bombarcing the residual meneus with a partiole b of an energy ; (the res'duej nucleus mast have been in an exaitod siate of an cnergy ($\epsilon_{b \max }-\epsilon$). The common factor $1,2 \mathbb{T}^{2} \omega_{C}$ drops out of η_{b} and only the pure nuraber

$$
\begin{equation*}
f_{1}\left(\epsilon_{b \max }\right)=\int_{0}^{\epsilon_{4} \operatorname{mox}} \frac{m \varepsilon}{h^{2}} \sigma_{g}(\epsilon) \omega_{R}\left(\epsilon_{b \max }-\epsilon\right) d \epsilon \tag{65}
\end{equation*}
$$

need to be compuied, whicl is a function of $b \max$ only. Then we can write

$$
\begin{equation*}
n_{h}=\left(\frac{1}{6} / \infty\right) \tag{66}
\end{equation*}
$$

*) In a fer o ioes the buw procdure was checked successfully by an exact calcillation.
This froondure differs fion the natcuation wart in Ph, 2. 57. 172 (ip/40), It givas steaper exctottion thrietivas. It is aquivalorit to une exprassions proposed in Bethe anci Konopinski Phys. Rev. 54, 1.30 (3.438).

where the sum in the denominator is extended over all particles conich can be emitted in this reaction. It is evident that the integrand in (64)

TABLE II

The cross sections σ_{p} and σ_{α} are given for 8 typical elements as function of the energy \in :

$$
\sigma_{p}, \alpha=n(x) \cdot 10^{-26} \mathrm{~cm}^{2}
$$

n is the number given in the tables, x is a measure of the energy in units of the barrier height B given in each column: $\epsilon=X \cdot B$. The columns headed by I correspond to a nuclear radius $R=r_{0} A^{1 / 3}$ with $r_{0}=1.3 \times 10^{-13} \mathrm{~cm}$, the columns headed by II, correspond to $r_{0}=1.5 \times 10^{-13} \mathrm{~cm}$.

The cross section $\sigma_{d}\left(\epsilon_{d}\right)$ for the penetration of the deuteron is equal to the one of the proton for an element with a charge smaller by a factor $\left(\frac{1}{2}\right)^{4 / 3}$ and with an energy smaller by $\left(\frac{1}{2}\right)^{\frac{1}{2}}$.

	${ }_{80} \mathrm{Hg}^{201}$				$90^{\mathrm{Th}^{232}}$			
	I		II		I		II	
x	p	α	p	α	p	α	p	α
. 25	----	0	--	0	---.	0	---	0
. 4	. 0120	0	. 00959	0	. 00265	0	. 00420	0
. 5	. 217	0	. 181	0	. 0562	0	. 111	0
.6	1.46	. 00075	1.40	0	. 47.1	0	1.03	0
.7	5.80	. 0522	6.01	. 0419	2.23	. 0315	5.02	. 0238
. 8	14.3	. 881	16.2	. 840	6.18	. 651	15.1	. 666
. 9	29.9	7.01	35.3	7.81	14.9	6.08	36.1	7.02
1.0	46.5	22.7	56.7	27.2	26.1	21.2	57.7	26.5
1.2	75.8	69.8	99.1	91.1	54.4	72.6	107	95.6
1.4	100	100	129	132	76.4	107	137	141
1.6	113	123	149	162	92.1	132	160	173
1.8.	126	141	163	184	---	150	176	198
2,0	138	155	-	205	---	167	---	219
B	15.18	25.93	13.16	22.47	16.28	28,00	14.15	24.27

$$
\begin{equation*}
I(\epsilon) d \epsilon=\left(\varepsilon m / \hbar^{2}\right) \epsilon \sigma_{b}(\epsilon) \omega_{R}\left(\epsilon_{b \max }-\epsilon\right) d \epsilon \tag{67}
\end{equation*}
$$

is the probability of emission of b with an energy between \mathcal{E} and $\in+d \in$. It describes the energy distribution for the outgoing particle as a function of its

It is interesting to discuss the connection between the distribution (67) and the Maxwell distribution of particles evaporating from a hot sphere, as indicated in the introduction.

The distribution $I(\in)$ can be written
$I(\epsilon)=\left(2 m / \hbar^{2}\right) \in \sigma_{b} \omega_{R}\left(\epsilon_{b \max }-\epsilon\right)=\left(2 m / \hbar^{2}\right) \epsilon \sigma_{b} \exp \left\{S\left(\epsilon_{b \max }-\epsilon\right) / k\right\}$ where $(1 / k) S\left(E_{\mathcal{B}}\right)$ is the logarithm of the level density of the residual nucleus. According to statistical mechanics, $S(E)$ is the entropy of the residual nucleus with the energy E. By writing

$$
S\left(\epsilon_{b \max }-\epsilon\right)=S\left(\epsilon_{b \max }\right)-\epsilon(\partial S / \partial E) \epsilon_{b \max }
$$

and by using the well-known statistical expression

$$
\begin{equation*}
\partial S / \partial E=1 / T \tag{68}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
I(\epsilon)=\text { const. } \epsilon_{b} \sigma_{b} l^{-\epsilon_{b} / k T} \tag{69}
\end{equation*}
$$

Here I is the temperature at which, according to (67), the residual nucleus has the average energy $\epsilon_{b \text { max }}$. If σ_{b} is a slowly varying function of the energy, as it is in the case of the emission of neutrons, the emitted particles have a Maxwellian energy distribution, just as particles would have, that are evaporated by a material with a temperature T. This temperature is, however, not the "temperature of the compound nucleus before emission", but the "temperature of a nucleus after emission". Here we understand by "temperature of a nucleus in a state of energy $E \prime$ the temperature at which it has an average excitation energy E. This comes from the fact that the "evaporation" of one particle constitutes a relatively large loss of energy which reduces the temperature considerably. The Maxwell distribution of the emitted particles is determined by the temperature after the emission.

If σ_{b} is a strongly varying function of the energy, as it is in case of charged particles emitted, the Maxwell distribution is deformed by the factor σ_{b} in (68). Since σ_{b} is usually a strongly increasing function for charged parti-

The limitations of the validity of the Maxwell distribution in nuclear emissions are obvious from the method of derivation: it is assumed (a) that the level density of the residual nucleus in the region of possible excitation is high enough to permit statistical treatment, (b) that $\in \ll \epsilon_{\mathrm{b} \text { max, }}$ which means that the energy of the emitted neutron is small compared to its maximum available energy. Since the level density of nuclei is unknown to a great extent, it is hard to predict the limits of validity in terms of Mevs. In recent experiments ${ }^{*}$) it seems that the level density of the lower lying levels is rather small, viz., about one or two levels per Mev in the first or second Mev of excitation energy. The maximum energy $\epsilon_{b \max }$ probably must be at least 5-7 Mev in order to expect a shape similar to a Maxwellian distribution for the emitted neutrons by elements in the middle or at the heavy end of the periodic system.

The values of the temperature T, which are expected in nuclear reactions, can be estimated in the following way: the average energy E of a system is a monotonically increasing function of the temperature T. If the temperature is very high, so that all degrees of freedom are excited, E is proportional to T. This is certainly not the case in a nucleus, when it is excited by a normal nuclear reaction. If one considers the nucleus very roughly as a gas of A particles concentrated in a volume $\left(\frac{4 \pi}{3} R^{3}\right)$, one finds that this "gas" is degenerated if the excitation energy is of the order or less than $\sim A H^{2} / 2 M R^{2} \cong$ $9 \mathrm{~A} / 3 \mathrm{Mev}$ 。 Heavy nuclei should therefore be considered as highly degenerated "gases"。 The stroing interaction between the particle does not affect this conclusion which also holds for an electron gas in metals in spite of their W) Wilkins, T. R. and Kuerti, G., Phys, Rev. 55, 1134 (1939).

Wilkins, T. R., Phys. Rev. 60, 365 (1941).
Dicke, R. H. and Marshall, J., Phys. Rev. 63, 86 (1943).
Dunlap, H. F. and Little, R. N., Phys. Rev. 60, 693 (1941).

The function $E(T)$ has a vanishing derivative: $(\partial E / \partial T)_{T=0}=0$ for $T=0$. (This means that the specific heat is zero for $T=0$ according to the third law of thermodynamics.) The expansion of $E(T)$ near $T=0$ starts therefore with a quadratic term. If a system is highly degenerate, we may write

$$
\begin{equation*}
E=b T^{2} \tag{70}
\end{equation*}
$$

and neglect the higher powers of T, which are small in this case. From this we get

$$
S=\int \frac{d E}{T(E)} \sqrt{a E}+\text { const., } a=4 / b
$$

and finally for the level density:

$$
\begin{equation*}
\omega(E)=C l^{\sqrt{a E}} \tag{71}
\end{equation*}
$$

One can try to adjust the constants a and C, so that this equation reproduces our rather scant knowledge on level densities. A fair choice for $A>60$ is e.g.,

$$
C_{\text {odd }}=[12 /(A-40)](\mathrm{Mev})^{-1}, \quad C_{\text {even }}=\frac{1}{2} C_{\text {odd }}, \quad a=3.35(A-40)^{\frac{1}{2}}(\mathrm{Mev})^{-1}
$$ if the excitation energies E are measured in Mev. Codd and $C_{\text {even }}$ refers to nuclei with odd or even A respectively.

The expression (7l) is adjusted to our knowledge of level densities for very low excitation energies and for excitations in the region of capture of slow neutrons. In the latter case only levels, whose spin differs by $\pm \frac{1}{2} h$ from the initial nucleus are observed. The level density in the expression (71), however, should include all levels which can emit or absorb the particles b with the energy ϵ_{b}. Our knowledge of level densities and of the distribution of angular momenta among the levels is insufficient to make any distinction of that kind at the present time.

From (70) an estimate can be given of the nuclear temperature which appears in expression (69) and which determines the Maxwell distribution of the outgoing neutrons. If the mazimum possible energy of the outgaing neutrons is Eo, the temperatures are given in the following table in Mev's according to

$\left(\frac{\partial S}{\partial E}\right)_{E=E_{0}}$	60	150	230
5	1.15	. 76	. 66
10	1.63	1.07	. 93
15	2.00	1.31	1.14

These temperatures can be obtained by bombarding the mucleus with neutrons of an energy E_{O}, or by any process leading to the same excitation energy of the compound nucleus. Expression (69) shows that the maximum intensity is emitted with an energy 2kT, if σ is a slowly varying function of ϵ, as it is expected to be in case of neutron emission.

With the expression (71) for the level density it is possible to calculate the functions $f\left(\mathcal{E}_{\text {bmax }}\right)$ defined in (65) which serve to compute the factor γ_{b} according to (65). Examples are shown in Fig. 4.

Fig.4. The functions f_{n}, f_{p} and f_{γ} are given as functions of energy for the compound nuclei $C \bar{u}, \mathrm{Zr}$ and Sn . These values must be multiplied by 2 or 0.5 if the residual nucleus is odd-bतd or even-even, respectively. Expression (71) for the level density is used in the computation.

The reaction types, discussed in this section, are ordered according to the nature of the incoming particle. Resonance reactions are excluded, since they were discussed in Section V.

1. Neutron Reactions

The cross section $\sigma_{n}(\epsilon)$ for the formation of a compound nucleus for energies ϵ above the resonance region is given by (63 a) and (63b), and is represented in Fig. 2.
(n, n) Reactions, This is not a real nuclear reaction since the bombarded nucleus remains unchanged. It may however be left in an excited state after reemission of the neutron, in which case we speak of inelastic scattering of neutrons by the nucleus. Once the compount nucleus is formed, every other particle except the neutron has to penetrate a potential barrier to get out. The neutron width, therefore, is much larger than any other particle width, and also larger than the radiation or fission width if ϵ is sufficiently high. Under these conditions $\eta_{n} \sim 1$ and the cross section for the (n, n) reaction is given by σn itself.

There is a difficulty in interpreting the observed (n, n) cross section by means of the expression (2), due to the presence of elastic scattering. This is the part of the n, n reaction in which the outcoming neutron has the same energy as the incoming one. As mentioned in Section XXXII, page 8, part of the elastic scattering is due to effects in which the neutron is deflected by the nuclear potentials, and thus does not penetrate and form a compound nucleus. This part of the scattering is evidently not included in the expression (2). The observed cross section of an (n, n) reaction therefore contains a part which has nothing to do with the formation of a compound nucleus. The waves of the scattered neutrons due to external effects (in which no compound nucleus is formed) combine coherently with the neutrons, emitted after the formation of the compound nucleus if they
are re-emitted by leaving the nucleus in its original state. These two effects together give the elastic scattering.

The obsorved cross section of an (n, n) reaction therefore contains a part which has nothing to do with the formation of a compound nucleus. The observed $\sigma(n, n)$ can be much larger than σ_{n}, especially at low energies, when the elastic scattering is a relatively large part of the total scattering. It is, of course, possible to separate the elastic from the inelastic scattering by distinguishing between the scattered neutrons of different energy. The cross section Fin for inelastic scattering, which is due to the neutrons which have left the nucleus in an excited state, is certainly lower than σ_{n}, because it does not contain the contribution from the elastic scattering, which corresponds to a real penetration into the nucleus and a subsequent re-emission by the compound nucleus with the sane enerey as it came in.

The pant of the elastic scattering coming from the real formation of the compound stete could be determined by creating the same compound nucleus in the same state of excitation by means of any other reaction. This compound nucleus emits neutrons exactly in the same way as it would do if created in a (n, n) reaction, according to Bohr's assumption B, but it does not contain the scattering without formation of a compound state. The relative amount of neutrons, which leave the residual nucleus in the ground state, can then be determined. This amount corresponds to the part of the elastic scattering which comes from the true nuclear reaction.

The energy of the emitted neutrons is given by the level spectrum of the bombarded nucleus. If the energy of the incoming neutron is less than the lowest excitation energy of the nucleus, only elastic scattering occurs. If the primary energy is higher, inelastic scattering can occur; the energy loss is always equal to an excitation level of the nucleus. If the primary energy is so high that a great number of levels can be excited, the energy distribution is given by expression (67) and becomes similar to a Maxwell distribution, as described on page

There is only very little experimental material available on the spectrum of the scattered neutrons by heevier elements. Dunlap and Little*) measured the spectrum of neutrons scattered by Pb with an initial energy of 2.5 Mev and found an Inelastic scattering which indicates several excitation lovels of Pb .

The ($n, 2 n$)-reaction occurs if the energy of the incident neutron is sufficiently high, the residual nucleus after the re-emission of the incident neutron, may still be excited highly enough to emit a second neutron. This is possible only if $\epsilon_{n}-\epsilon_{b}$ is larger than the binding energy B_{n} of a neutron to the bombarded nucleus where ϵ_{n} is the energy of the incident neutron and ϵ_{k} is the energy of the first emitted neutron. The probability of ($n, 2 n$) reaction is therefore given by:

$$
\sigma(n, 2 n)=\sigma_{n} \frac{\int_{0}^{\epsilon_{n}-B_{n}} I(\epsilon) d \epsilon}{\int_{0}^{\epsilon_{n}} I(\epsilon) d \epsilon}
$$

where $I(\epsilon) d \epsilon$ is the probability of emission of a neutron with the energy ϵ, given by (67). For energies ϵ_{n} which make a ($n, 2 n$) reaction possible, the energy distribution can be well approximated by a Maxwell distribution (69) with a temperature T, with which one obtains (with $\sigma_{n}=\zeta \pi R^{2}$):

$$
\begin{equation*}
\sigma(n, 2 n)=\xi \pi R^{2}\left[1-(1+\Delta \epsilon / T) l^{-\Delta \epsilon / T}\right] \tag{71a}
\end{equation*}
$$

If $\Delta \epsilon-$ the energy surplus over the threshold energy of the reaction - is large compared to the temperature T, the ($n, 2 n$) reaction should be the dominant reaction and its cross section is then nearly equal to σ_{n}. The (n, n) reaction cross section should become correspondingly smaller. This should occur for $\Delta \in \underset{\sim}{ } 2$ or 3 Mev for elements in the middle of the periodic systems. For very high primary energies -$\epsilon>2 \mathrm{~B}_{\mathrm{n}}-(\mathrm{n}, 3 \mathrm{n})$ reactions will occur.
*) Dunlap and Little, Phys. Rev.

The (n, p) reactions naturally are less probable than the (n, n) reactions, because of the potential barrier which prevents the proton from leaving the nucleus as easily as a neutron. The cross section is given by:

$$
\sigma(n, p)=\sigma_{n} \frac{f_{p}}{f_{n}+f_{p}}
$$

where the f's are given by (65). This cross section assumes measurable values only if the energy of the incident neutron is several Mev above the reaction threshold, because the outgoing proton needs that much energy to penetrate the barrier. The rather steep dependence of $\sigma(n, p)$ on the energy gives rise to an apparent threshold which is much higher than the actual threshold.

If the nucleus which is created by the (n, p) reaction is a negative electron emitter, the final product of the β-deay is identical with the initially bombarded nucleus. In this case the reaction energy $Q=\epsilon_{p}-\epsilon_{n}$ of the (n, p) reaction can be calculated by the energy law. The energy balance in the nuclear reaction

$$
n+X=Y+p
$$

is given by

$$
\epsilon_{\mathrm{n}}+E_{X}=E_{Y}+\epsilon_{\mathrm{p}}
$$

where E_{X} and E_{Y} are the binding energies of the nuclei X and Y in their ground states. The $\mathcal{\beta}$-decay has the following energy balance:

$$
E_{Y}=E_{X}-m_{n}+m_{p}+\epsilon^{-}+h \nu
$$

where m_{n} and m_{p} are the mass energies of the proton and the neutron and ϵ^{-}in. cludes the mass energy mc^{2} and the kinetic energy $\epsilon_{\text {kin }}^{-}$of the electron emitted; $\mathrm{h} \mathcal{V}$ is the energy of a \mathcal{Y}-ray which may accompany the $\mathcal{\beta}$-decay. We thus get for the Q-value:

$$
\begin{equation*}
Q=\epsilon_{\mathrm{p}}-\epsilon_{\mathrm{n}}=\mathrm{m}_{\mathrm{n}}-\mathrm{mp}_{\mathrm{p}}-\epsilon^{-}-\mathrm{h} \mathrm{\nu}=0.7 \mathrm{Mev}-\mathrm{h} \mathrm{\nu}-\epsilon_{\mathrm{kin}}^{-} \tag{72}
\end{equation*}
$$ (n, a) reactions have an extremely small cross section in heavy nuclei because of the potential barrier, which makes it very improbable that the α-particle leaves the nucleus. If the neutron energios are extremely high,

however, (n, a) reactions may occur in heavy nuclei. There will be more chance to observe thesc reactions at very heavy elements, where the binding energy of the a-particle is smaller.

The (n, γ) reaction is usually called radiative neutron capture and was discussed extensively in the resonance region in Section $X X X V$. In the higher energy region the average value over many resonances is observed.

$$
\sigma(n, D)=\sigma_{n}\left(\Gamma_{r} / \triangle\right)
$$

The processes which compete in heavy elements with the radiation, are the rem emission of the neutron and, in some elements, the nuclear fission. We exclude the latter from these considerations. The cross section for the radiative capture of a neutron with an angular momentum ℓ 有 is given by

$$
\begin{equation*}
\sigma_{l}(n, \eta)=\sigma_{l}^{(n)} \frac{\overline{\Gamma_{I}}}{\Gamma_{\Gamma}^{1}+\bar{\Gamma}_{n}} \tag{73}
\end{equation*}
$$

Γ_{Γ} is the average radiation width and $\bar{\Gamma}_{n} \ell$ is the neutron width for the compound states, which are excited by a neutron with an angular momentum $l \hbar$. If the primary neutron energy is not too high (less than 1 Mev), the probability of inelartic scattering is relatively low, so that the re-emission of the neutron is essentially the process inverse to the capture*). Γ_{n}^{l} stands then in the relation (16) to $\sigma_{l}^{(n)}$, and we get for the total capture cross section:

$$
\begin{equation*}
\sigma(n, \gamma)=\frac{2 \pi^{2} \cdot \lambda_{n}^{2}}{D} \sum_{\ell} \frac{T_{r}}{1+T_{r} / T_{n}^{(\ell)}} \tag{73a}
\end{equation*}
$$

This can be calculated with the help of (59b). For small energies ($\lambda \gg \mathrm{R}$) only $\ell=0$ contributes and we obtain from (73) and (59b) by assuming $\Gamma_{r}>\Gamma_{r}^{(0)}$

$$
\begin{equation*}
\sigma(n, \gamma)=\zeta_{-1} \pi\left(k_{n} / k_{0}\right) \lambda_{n}^{2}=\zeta \pi \lambda_{n} x_{0} \tag{74}
\end{equation*}
$$

where $x_{0}=k_{0}^{-1}$ and $x_{n}=k_{n}^{-1}$ is the wave length of the incoming neutron. With a value of X_{0} corresponding to 2 Mev , one obtains
*) If the angular momentum of the bombarded nucleus is different from zero, the neutron can be re-emitted with an angular momentum l^{\prime} different from the angular momentum ℓ of the captured one. The partity rule allows only $|\ell-l|=$ 2, 4 etc., and a closer investigation shows that the probability of $\ell-l^{\prime} \neq 0$ is rather small.
if ϵ is measured in ev. \mathcal{C} is a magnitude which should be not far from unity*:) An example of the energy dependence of $\sigma(n, \gamma)$ is given in Fig. 5, which shows expression (73a) with the following choice of constants: $R=9 \times 10^{-13}$, $k_{0} R=3, D / 2 T=45 \Gamma_{\Gamma}, \quad \xi=1$.
$\sigma(n, \gamma)$ becomes very small if strong inelastic scattering sets in, since the value of $\overline{\Gamma_{n}}$ is then considerably increases. This may happen at energies as low as 0.5 Mev in some elements. In others (73a) may be valid up to 1.5 Mev .

2. Proton Reactions

The theoretical cross section $\sigma_{p}\left(\epsilon_{p}\right)$ for the formation of a compound nucleus by a proton is given in Table II for some characteristic elements. The actual values are probably somewhat smaller because of the factor \mathcal{C}_{0}.

The most probable proton reaction is the (p, n)-reaction. Only in cases where the proton energy is not high enough to emit a neutron, other reactions have a chance of a considerable cross section. The reaction energy Q of a (p, n) reaction can also be determined from the energy of the β-rays of the nucleus created, if the latter is a positron emitter. One obtains instead of (72):

$$
Q=\epsilon_{n}-\epsilon_{p}=m_{p}-m_{n}-h \nu-\epsilon^{+}=-h \nu-\epsilon_{\mathrm{kin}}^{+}-1.7 \mathrm{Mev}
$$

Thus the Q-values of (p, n) reactions are usually negative and of the order of several Mev's.

The cross section of a (p, n) reaction is given by:

$$
\begin{equation*}
\sigma(p, n)=\sigma_{p} \eta_{m} \tag{75}
\end{equation*}
$$

and η_{n} is very near unity above the throshold apart from exceptional cases in which the energy of the outgoing neutron is very much smaller than the energy of proton. This may happen just above the threshold if the threshold evergy is very
*) Note that this is an average over a region containing many levels and thus does not apply to thermal energies.

high. Then the advantage of the neutron emission, which comes from the absence of a barrier is made up by the high energy of the competing proton re-emission. In this case η_{n} can be smaller than 1 and is determined by $\eta_{n}=f_{n} /\left(f_{n}+f_{p}\right)$. The f's are functions of the maximum energy $\epsilon_{\max }$ of the respective particles as described previously. If $\epsilon_{n \max } \ll \epsilon_{p \max }$, it may happen that $f_{p}>f_{n}$, particularly if the nuclear charge Z is not too high, (See Fig. 4.) A case of this sort is found in the $N i^{62}(p, n) C u^{62}$ reaction which has a threshold of 4.7 $\mathrm{Mev}^{*}{ }^{\text {² }}$.

In general, however, the cross section of a (p, n)-reaction should be very closely equal to σ_{p} in Table II for different nuclei. Comparison with experiments*) have shown that a nuclear radius $R=r_{0} A^{1 / 3}$ with $r_{0} \sim 1.3 \times 10^{-8} \mathrm{~cm}$ fits better for elements in the middle of the periodic system between Ca and Ag .

The energy distribution of the emitted neutrons, is similar to the distribution in an (n, n)-reaction. The highest possible energy occurs when the final nucleus is left in its ground state, and the emitted spectrum corresponds to the excitation spectrum of the final nucleus in the way that lower energies in the spectrum differ from the highest by an amount equal to an excitation energy of the nucleus. For high initial proton energies, this spectrum becomes similar to a Maxwell distribution.

If the maxinum energy $\epsilon_{n \text { max }}$ of the neutrons of a (p, n) reaction is larger than the binding energy of a neutron to the final nucleus, the latter can be left in an excited state high enough to emit a second neutron. We then obtain a $(p, 2 n)$-reaction. The probability of this event is given by a similar expression to (7la); σ_{n} has to be replaced by σ_{p}. The energy distribution $I(\epsilon)$ of the emitted neutrons can be represented here also by a liexwell distribution and we get:

$$
\begin{equation*}
\sigma(p, 2 n)=\sigma_{p}\left[1-(1+\Delta \epsilon / T) \ell^{-\Delta \epsilon / T}\right] \tag{76}
\end{equation*}
$$

7) Weisskopf and Ewing, Phys. Rev. 57, 472, (1940).
$\Delta \mathbb{E}$ is the excess energy of the proton over the ($p, 2 n$) threshold.
The ($p, 2$) reaction is the most important reaction in case the proton energy is below the (p, n) threshold. The only competing process is then the reemission of the proton $[(p, p)$ reaction $]$, which is not probable since the proton has to penetrate the barrier again. The cross section is given by:

$$
\begin{equation*}
\sigma(p, \gamma)=\sigma_{p} \frac{f_{\gamma}}{f_{p}+f_{\gamma}+f_{n}} \tag{77}
\end{equation*}
$$

and is vanishingly small above the (p, n) threshold because f_{n} rises rapidly and becomes larger then all other f's. No resonance effects should be expected in the (p, γ) reactions since in heavy elements, in the resonance region, the energy of theof the proton is much too small to penetrate the barrier to an observable extent. The (p, p) reaction can be observed if the proton energy is not sufficient to emit a neutron with appreciable probability, Since the Rutherford scattering by the Coulomb field is always present and usually much stronger than any nuclear reaction, a (p, p) reaction can only be observed either by registering scattered protons with less energy than the incoming ones*) or by finding the bombarded nucleus in an excited state ${ }^{* *}$) which must be a metastable (isomeric) state in order to be observed.

The cross section of a (p, p) reaction is given by:

$$
\sigma(p, p)=\sigma_{p} \frac{f_{p}}{f_{p}+f_{2}+\varepsilon_{n}}
$$

It rises steeper than σ_{p} with increasing energy ϵ_{p} of the incoming proton, as long as $f_{p}<f_{2}$, since f_{p} also is a strongly rising function of $\epsilon_{p} \quad \sigma_{(p, p)}$ is then essentially proportional to the square of the penetration of the barrier.

3. α-Particle Reactions

These reactions are very similar to the proton reactions. The (α, n)
*) R. Wilkins; Phys, Rev. 60, 365 (1941).
R. Dicke and J. Marshall, Phys. Rev. 63, 86 (1943).
**) S. Barnes, Phys, Rev. 56, 414 (1939).
reaction is the most probable one and its cross section is given by an expression like (75) with σ_{α} instead of $\sigma_{\mathrm{p}} . \quad \eta_{\mathrm{n}}$ is almost unity except below or near the threshold energy. The $(\alpha, 2 n)$ reaction is given by the same expression as (76) after replacing σ_{p} by σ_{α}, and so is the (α, γ) reaction cross section given by (77). The latter one is unobservably small since, below the (α, n) threshold, the α-particle hardly can penetrate the barrier.

The (α, p) reaction has a cross section of the form

$$
\sigma(a, p)=\sigma_{a} \frac{f_{p}}{f_{p}+f_{n}}
$$

and is always smaller than the (α, n) reaction but can have observable cross sections especially with low Z and $\epsilon_{\mathrm{p} \max }>\epsilon_{\mathrm{n} \text { max }}$.

It is hard to estimate the threshold energies for the different C-reactions, because of the fact that the binding energy of the α-particle to the compound nucleus is not well known, but is needed to determine the excitation energy of the compound nucleus. The binding energy B_{α}, can be estimated as follows: four nuclear particles are added, which have had in the α-particle a binding energy of 28 Mev . Thus the binding energy of the cc-particle should be ${ }^{B}{ }_{C}=4 B-28 \mathrm{Mev}$, where B is the average binding energy of the two protons and two neutrons added. B is not well enough known to make any guess about Bcc. Recent results on ($\alpha, 2 n$) reactions ${ }^{*}$) have shown that, with 15 Mev α-particles, ($\alpha, 2 n$) reactions were not observable. This shows that, at least in the investigated elements: $B_{n_{1}}+B_{n_{2}}-B \geq 15 \mathrm{Mev}$, where $B_{n_{1,2}}$, are the binding energies of the first and second neutron of the $(\alpha, 2 n)$ reaction.

4. Deuteron Reactions

The d-reactions follow in general the same laws as the proton reactions. They distinguish themselves from all other reactions because of the very high excitation of the compound nucleus. The excitation energy is equal to the kinetic energy of the deuteron plus the binding energies of two particles reduced by the *) R. N. Smith, Dissertation, Purdue University, unpublished
relatively small internal binding energy of the deuteron of 2.15 Mev . It amounts to about $14-16 \mathrm{Mev}$ plus the kinetic energy. This is one of the reasons why deuteron-reactions have a relatively large yield.

The (d, n) and ($\mathrm{d}, 2 \mathrm{n}$) reactions obey the same laws as (75) and (76). σ_{d} is naturally smaller than σ_{p} at the same energy. The maximum energy $\epsilon_{n \max }$ of the outgoing neutron is usually much higher than the deuteron energy because of the high excitation of the compound nucleus. Thus, there is no positive threshold for the (d, n) reaction, and η_{n} is always nearly unity.

The threshold of the $(d, 2 n)$ reaction can be calculated from the β-energy of the produced radiaactive nucleus if it is a positron emitter. According to the same principles as in (72), we find

$$
\begin{gathered}
(d, 2 n) \text { threshold }=\epsilon^{+}+h v+m_{n}-\underline{n_{p}}+\epsilon_{D} \\
=\epsilon_{k i n^{+}} h v+2.85 \mathrm{Mov}
\end{gathered}
$$

Here $\epsilon_{D}=2.15 \mathrm{liev}$ is the internal binding energy of the deuteron.
The (d, p) reaction should be much less probable than the (d, n) reaction. Actually, however, (d, p) reactions are observed with equal yield as (d, n) reactions. This has been explained by Oppenheimer and Phillips*) and is due to the following process: the distance between the proton and the neutron within the deuteron is relatively large, nanely $\sim 3.5 \times 10^{-13} \mathrm{~cm}$ and its binding force ϵ_{D} of 2 Mev is undoually small. This is why the deuteron becomes strongly "polarized" when it approaches a nucleus; the proton goes to the farther end and the neutron to the nearer end. If the neutron arrives at the nuclear surface, the proton is still some distance away and has still a potential barrier to penetrate. The nuclear forces, which then act upon the neutron are much larger than ϵ_{D}, and the deuteron is likely to break up, when the proton still is relatively far away from the surface. After breaking up, the proton is only under the influence of the repulsive Coulomb force and leaves the nucleus. The actual
*) Phys. Rev. 48, 500 (1935).
nuclear reaction is a capture of a neutron after the deuteron has been broken up into its parts by the Coulomb field of the nuclear charge. The apparent effect, however, is a (d, p) reaction.

The cross section of the Oppenheimer-Phillips process is much larger than σ_{d}, since the latter is given by the probability that the charge reaches the nuclear surface, whereas, in the Oppenheimer-Phillips process, it reaches a point some distance outside of the surface.
(d, 2) processes do not occur with measurable yield since the compound nucleus always is able to emit a neutron with considerable energy.

5. Radiative Procosses

Nuclear reactions can be initiated by the absorption of a γ-ray. It is evident that the energy $h z$ must be larger than the lowest binding energy of a particle. The compound state is, in this case, a highly excited state of the initial nucleus. The levels are then so close that no resonance can be expected. The cross section for the different processes is given by

$$
\sigma(\eta, b)=\sigma_{\gamma}\left(f_{b} / \sum_{a} f_{a}\right.
$$

where b is the emitted particle and the sum is extended over all competitors. The most common reaction of this type is the (γ, n) reaction. (γ, p) reactions are possible, but me moil weaker. Any other particle woul. not be able to compete with either pocto meutron emission. Exception to this are found in very heavy elements where photo-fission occurs. The excited state is then unstable against splitting into two fragments.

The vinue of Try is connected with the transition probabilities between nuclear states, and before describing its properties, it is necessary to discuss other radiative nuclear processes.

Radiative transitions between low-lying excited states have been observed in great number in the \mathcal{Z}-ray emissions accompanying β-decay and α-decay. In analyzing term systems, it was found out, that, transitions occur between states which differ by two units of angular momenta, $\Delta j=2$ and not only between states differing by one or no unit, as it is the case with atomic spectra. It is known that the change of two units corresponds to a quadrupole radiation which should be smaller in the ratio $(R / X)^{2}$ compared to the dipole radiation emitted in the transitions $\Delta j=1,0$. This ratio is about 1000 in the observed region of $h V^{\prime} \sim 5 \times 10^{5}$ ev whereas the observed quadrupole transitions were about equally probable as the dipole transitions. This has been explained by the fact that, dipole radiation only occurs if the center of charge is moving relative to the center of mass, whereas quadrupole and higher pole radiation is emitted also in motions where the two centers stay coincident. In a nucleus, the charge is nearIy evenly distributed over the mass, since protons and neutrons are not distinguished in their nuclear motion. Thus the center of mass and charge stay practically together and this strongly reduces the dipole radiation. According to the observations, this reduction is strong enough to reduce it to the strength of the quadrupole reciation,

We therefore expect that the absorption of \mathcal{V}-rays by nuclei, also follows the law of guarrupole or dipole absorption. The ratio of the transition probabilities in quadrapole and dipoie radiation is proportional to ψ^{2}, and we expect therefore minly quazipule transitions for the absorption of γ-rays of more than 10 Mev wich lead to (γ, b) processes (b ma, bs nis particle), since both types of radiacion ware equally probable for lese unca 3 . Mev.

Quadrupole raciation corresponds in the particje ricture of light, to the emission or aksoption or a photon with on orbital angrem momentum of one unit, whereas in the dipoie radiation, the photon only possesses an intrinsic "spin" of one unit and no orbital momentum. Thus quadrupole absorption corresponds to the absorption of a p-particle.

The cross section σ_{r} and its energy dependence can then be estimated. We use the fact that the wavelength X, even for energies as high as 30 Mev is still larger than nuclear dimensions. The absorption probability should then be
just proportional to the intensity \mathcal{E}^{2} of the electric field \mathcal{E} at the nucleus. (The same principle, namely that the probability should be proportional to the neutron density at the nucleus, leads to the $1 / v$ law for neutron capture.) This intensity for a photon is, firstly, proportional to the frequency, since $\varepsilon^{2} \sim h \nu$. Secondly, because of the fact that it is a "p-photon" with an anguler momentum one, its intensity at the nucleus is proportional to $(R / X)^{2}$ (cf. page 7, section XXXIV).

Thus the probability of absorption is proportional to 2^{3}. The cross section σ_{γ} is $1 / v$ times the probability which gives here, because of $v=c$:

$$
\sigma_{\gamma}=c(h \nu)^{3}
$$

where C is a constant ${ }^{*}$).
This relation is found to be well fulfilled according to ($\boldsymbol{\gamma}, \mathrm{n}$) experiments made by Bethe and dentner ${ }^{* *}$) who bombarded a number of elements with γ-rays of 17 Mev and of 12 Mev . The constant C shows surprisingly little change over the periodic system and is $C=0.65 \times 10^{-29} \mathrm{~cm}^{2} /(\mathrm{Mev})^{3}$. This value can also be brought into connection with the observations on γ-rays between low-lying elements: by applying expression (16), the width for the emission of a γ-ray can be found:

$$
\begin{equation*}
\Gamma_{\gamma}=\frac{C(h \nu)^{3}}{\pi^{2} \pi^{2}} D=\frac{C(h \nu)^{5}}{\pi^{2} c^{2} \hbar^{2}} D \tag{78}
\end{equation*}
$$

D is the level distance in the region of the upper level. If this is applied to low-lying levels of $h \mathcal{N}$ Mev with a level distence of $D \sim 0.5$ Mev we obtain $T \sim \sim 10^{-3} \mathrm{ev}$. This is in good agreement with the known transition probabilities among low-lying nuclear levels ${ }^{+}$).

The radiation width Γ_{r} of levels of the compound nucleus created by
*) Weisskopf, Phys. Rev. 59, 318, (1941).
**) Bethe and Gentner, Z. fur Phys. 112, 45, (1939).
) H. A. Bethe, Rev. Mod. Phys. 2, 229 (1937), see also experiments by Waldmen, Phys, Rev.
neutron absorption is a composite megnitude and cannot be compared directly with Tr. Tr represents the sum of all transitions from the level of the energy E to lower lying levels, whose number is very high. Formula (78) gives the radiation width for a transition from an excited state to the ground state only. If one applies (78) also to transitions to excited states, the radiation width Γ_{F} is given by:

$$
\begin{equation*}
T_{r}=\int_{0}^{E / \hbar} T_{\nu}(\nu) \omega(E-h \nu) \hbar d z \tag{79}
\end{equation*}
$$

where T_{2} is the width as a function of the emitted radiation and \mathcal{C} is the level density and E the excitation energy of the level, whose Γ_{Γ} is calculated. If E is assumed 9 Mev and the expressions (71) are used for the level densities (A \sim 100) one obtajne from (79): $\Gamma_{\Gamma} \sim 0.3$ Mev which is rather close to the observed values in Table I, out somewhat large.

The application of (78) to transitions to excibed states is questionable. On is incined to assume from the forms of (rs) that the magnitude Γ / D is slowiy rariable where D is the level distance, if one varies either the upper level or the lower level of the transition. In this case one would get instead of (79):

$$
\begin{equation*}
\Gamma_{I}=\int_{0}^{E / h} \Gamma_{\gamma}(v) \omega(\theta) h d v \tag{80}
\end{equation*}
$$

where $\omega(0)$ is the level density near the ground state, which is of the order of 3.5 (Mev) ${ }^{-1}$. One then gets for E~9 Mev: $\Gamma_{\Gamma}=2.0 \times 10^{-4} \mathrm{D}^{\prime}$ where D^{\prime} is the Ievel distance at the upper level, which is of the order of 40 ev . This gives definitely too small values. The truth lies probably souewhere between (79) and (80).

The dependence of Γ_{Γ} on the excitation energy E is given by (80) as proportional to E^{6} and by (79) as very slowly increasing function of E . Hence it is very difficult to predict the dependence of Γ_{Γ} on the excitation energy. The expected spectrum of the emitted radiation from a state with the excitation energy E depends also on the assumptions made. The intensity $I(z) d z$ is valid, the distribution is proportional to $t y$ and has a maximum at high energies; the transitions to the lowest states are the most probable ones. If (79) is valid, the intensity has a maximum somewhere at intermediate energies; it is proportionel to 2^{5} and also to the level density at the end state, which decreases sharply for the transitions of larger energy.

$$
I A-24(37)
$$

February 15, 1944

IECTURE SERIES ON NUCLEAR PHYSICS

Sixth Series: Diffusion Theory Lecturer: R.F. Christy LECTURE 37: DIFFUSION EQUATION AND POINT SOURCE SOLUTIONS

In the first lectures we will discuss the diffusion of neutrons which have come into energy equilibrium with their surroundings (thermal neutrons). Later we will discuss the slowing down and diffusion of fast neutrons and corrections to the diffusion theory of thermal neutrons.

The Diffusion Equation

The flux of thermal neutrons is $-D \nabla n$ where n is the thermal neutron density and D the diffusion constant. D can be obtained from simple kinetic theory arguments and equals $\lambda v / 3$ where λ is the mean free path and v the neutron velocity. The "standard" velocity of thermal neutrons is $2.2 \mathrm{Km} / \mathrm{sec} . \lambda$ is related to the total cross-section σ by the relation $\lambda=1 / \mathrm{N} \sigma$ where N is the number of nuclei per cc.

The diffusion equation can then be written div (D grad n) + production/cc sec. - absorption/co
sec. $=\partial n / \partial t$
The production/cc sec. is usually denoted by q, a function of position. If σ_{a} is the absorption crossmsection, the absorption/ co sec. is equal to $N \sigma_{a} n V$; or, writing $\Lambda=1 / N \sigma_{a}$ = the mean free path for absorption, the absorption/cc sec equals $(v / \Lambda)_{n}=n / \tau$ where τ is the mean life of the neutrons.

This leads to the diffusion equation in the following
forms.

$$
\begin{gathered}
D \nabla^{2} n+q-\frac{n}{\tau}=\frac{\partial n}{\partial t} \\
\frac{\lambda V}{3} \nabla^{2} n+q-\frac{y}{\Lambda} n=\frac{\partial n}{\partial t} \\
\text { If we consider the time independent diffusion equation } \\
\left(\frac{\partial n}{\partial t}=0\right) \text { we get } \\
\frac{\lambda v}{3} \nabla^{2} n-\frac{v}{\Lambda} n+q=0 \\
D \nabla^{2} n-\frac{n}{\tau}+q=0 \\
\nabla^{2} n-\frac{n}{L} 2+\frac{3}{\lambda} q=0
\end{gathered}
$$

where $L^{2}=\lambda \wedge / 3=D \tau$. I is called the diffusion length. Plane Source in an Infinite Medium

Let the source be of strength $\mathrm{Qn} / \mathrm{cm}^{2}$ and occupy the plane $z=0$. With $q=0$ everywhere except $z=0$, the equation reads

$$
\frac{d^{2} n}{d z^{2}}-\frac{n}{L^{2}}=0
$$

which has solutions $e^{z / L}$ and $e^{-z / L}$. Since the neutron density must approach zero for $z=+\infty$ the correct solution must be $n=A e^{-|z| / L}$.

In order to relate A to Q, we note that the flow out from the source per cm^{2} is

$$
\begin{aligned}
& \left.-\frac{2 \lambda v}{3} \quad \frac{d n}{d z}\right)_{z}=0=\frac{2 \lambda v}{3} \quad \frac{A}{I}=Q \\
& \text { so } A=\frac{3 I Q}{2 \lambda v} \\
& \text { and } n=\frac{3 L Q}{2 \lambda v} \quad 0-|z| / L
\end{aligned}
$$

This equation can be used to determine L experimentally
for such materials as paraffin or water where $L \approx 3 \mathrm{~cm}$ is small compared to convenient transverse dimensions of about 1 meter. A source or thermal neutrons is not directly available but can be obtained as follows. A fast neutron source is placed below the plane $z=0$ in some slowing medium. At $z=0$ a removable sheet of Cd (which selectively absorbs thermal neutrons) is placed. Above $z=0$, data on n is obtained for the $C d$ in place and with no Cd. The difference represents the effect of the Cd which is a thermal source or sink and follows the above equation. If the diffusing medium cannot be considered infinite in the transverse direction and if the source can be considered to have the transverse distribution $\cos \pi X / a \cos \pi y / a$ where a is the transverse dimension, then the solution is

$$
n=A \cos \frac{\pi x}{a} \cos \frac{\pi \pi}{a} e^{-z / b}
$$

Substitution in the diffusion equation

$$
\frac{d^{2} n}{d x^{2}}+\frac{d^{2} n}{d y^{2}}+\frac{d^{2} n}{d z^{2}}-\frac{n}{L^{2}}=0
$$

leads to

$$
\begin{aligned}
& -\frac{\pi^{2}}{a^{2}}-\frac{\pi^{2}}{a^{2}}+\frac{1}{b^{2}}-\frac{1}{I^{2}}=0 \\
& \text { or } \frac{1}{b^{2}}=\frac{1}{I^{2}}+\frac{2}{a^{2}}
\end{aligned}
$$

which determines b. This relation is frequently used for the determination of L in media where L is relatively long, of order 1 ft.

Point Source in an Infinite Medium
Here we write the diffusion equation with $q=0$ in
spherical coordinates, considering only spherically symmetric solum tions.

$$
\frac{1}{r^{2}} \quad \frac{d}{d r}\left(r^{2} \frac{d n}{d r}\right)-\frac{n}{L^{2}}=0
$$

if $u=r n$ then u satisfies the equation

$$
\frac{d^{2} u}{d r^{2}}-\frac{u}{L^{2}}=0
$$

The condition that n be finite at $r=\infty$ gives

$$
\begin{aligned}
u & =A e^{-r / L} \\
\text { and } \quad n & =\frac{A}{r} e^{-r / L}
\end{aligned}
$$

The source strength

$$
\begin{aligned}
Q & \left.=\frac{\lambda v}{3} 4 \pi r^{2} \quad \frac{\partial n}{\partial r}\right\rangle r=0=4 \pi A \frac{\lambda v}{3} \\
\text { so } n & =\frac{3 Q}{4 \pi \lambda_{V}} \quad \frac{1}{r} \quad e^{-r / L}
\end{aligned}
$$

Depression of Neutron Density Near a Foil
A simple expression for the depression of the neutron density near a foil can be obtained only if we assume the foil to have the form of a spherical shell. Let its thickness bet, absorption cross-section σ_{a}, and its nuclear density be N.

The diffusion equation is

$$
D \nabla^{2} n-\frac{n}{\tau}+q=0
$$

Let $n=q \tau-\frac{A}{r} e^{-r / L}$ which satisfies the equation and has in general the right form. The number of neutrons absorbed per second by a foil of radius r_{0} is

$$
N \sigma_{a} \operatorname{tn}\left(r_{0}\right) v 4 \pi r^{2}=\frac{\lambda v}{3} 4 \pi r^{2} \quad \frac{\partial n}{\partial r} r_{0}
$$

$$
\begin{aligned}
& \text { or } \frac{3 N \sigma_{a} t}{\lambda}\left(q \tau-\frac{A}{r_{0}} e^{-r} / L\right)=\frac{A}{r_{0}} e^{-r} / L \\
&\left(\frac{1}{r_{0}}+\frac{1}{L}\right) \\
& \frac{A}{r_{0}} e^{-r} / L \quad\left\{\frac{1}{r_{0}}+\frac{1}{L}+\frac{3 N \sigma_{a} t}{\lambda}\right\}=\frac{3 N \sigma_{a} t}{\lambda} \quad q \tau \\
& \frac{A}{r_{0}} e^{-r} / L=\frac{q \tau}{1+\frac{\lambda / r_{0}+}{3 N \sigma_{a}}+\lambda / L}
\end{aligned}
$$

The fractional depression in neutron density at the foil is

$$
\frac{\frac{A}{r_{0}} e^{-r / L}}{q \tau}=\frac{1}{1+\frac{\lambda / r_{0}+\lambda / L}{3 N \sigma} t}
$$

which can be considerably larger than the fraction of neutrons absorbed in a single traversal of the foil which is $N \sigma$.

LECTURE SERIES ON NUCTEAR PHYSICS

Sixth Series: Diffusion Thoory Lecturer: R.F. Christy
LECTURE 38: FOTYT SQURCE PRORTRUS ATH ATBEDO
Effect on Proll on Nentron Density
In the Iast Iecture we considered the offect of a detector, such as an indjum foil, on the neutron density in a medium in which thermal neutrons wers difensing. It was shown how, as a first appreximation, the foil corld be replaced $\mathrm{n} y \mathrm{a}$ sphere and fairly simple results obtained. Let us now consider a more exact approach to the pronjem.

Suppose we consider the element of area (dA) of the foil surface as a point absorber. If p is the coordinate of the element $d A$ and r is the cocrdinate of the point at which we want to know the neutron density, then the effect of a point sinh such as $d A$ is given by:

To evaluate C we constier the following:
The number of neutrons absorbed per second may be set equal to the number passing through the surface of a very small sphere surrounding our point sinh. Now the number of neutrons absorbed per second equals Nt σ_{a} nvdA where:
$N=$ number of atoms/ce in foil

$$
\begin{aligned}
t & =\text { thickness of foil } \\
\sigma_{a} & =\text { absorption cross-section of foil material } \\
v & =\text { neutron velocity }
\end{aligned}
$$

The number of neutrons passing into a very, very small sphere is given by:

$$
\frac{\lambda v}{3} \lim _{r \rightarrow 0} 4 \pi r^{2} \frac{d}{d r}\left(\frac{C e^{-r / I_{r}}}{r}\right)=-\frac{4 \pi \lambda V}{3} C
$$

Therefore:

$$
\begin{gathered}
\frac{4 \pi \lambda v}{3} \quad c=-N \operatorname{to}_{a} n v d A \\
C=-\frac{3 N t \sigma_{a} n v}{4 \pi \lambda v} \quad d A=-\frac{3 N t_{a} n}{4 \pi \lambda} d A
\end{gathered}
$$

The effect of the whole foil is then the sum of the effects of each element. On adding these effects and passing to the limit as the number of subdivisions is increased we get the total effect of the foil at any point r to be

$$
-\frac{3 N t \sigma_{a}}{4 \pi \lambda} \int_{f o i 1} n(p) \frac{e^{-|r-p|}}{|r-p|} d A
$$

If we assume our source to be such that in the absence of the foil the neutron density in the region in which we are interested is everywhere constant and equal to one, then the neutron density at any point is merely given by the sum of the contributions of the foil and the source without the foll

Thus

$$
n(r)=1-\frac{3 N t \sigma_{a}}{4 \pi \lambda} \text { foil } n(p) \frac{e^{-|r-p|}}{|r-p|} d A
$$

The more precise approach to our problem therefore is seen to lead
to an integral equation. Since this equation is difficult, if not impossible, to solve exactly the usual procedure is to have recourse to approximating the foil by a sphere.

Point Source in a Finlte Sphere

As another example of the way in which the diffusion equation may be applied let us consider the problem of a point source in a finite spherical medium. The general solution in such a case is:

$$
n=\frac{A}{r} e^{-r / L}+\frac{B}{r} e^{r / L}
$$

where A and B are arbitrary constants to be determined. B may be found in terns of A by means of the relation; $n(R)=0$ where R is the outer radius of the splere.

$$
\begin{aligned}
n(R) & =0=\frac{A}{R} e^{-R / L}+\frac{B}{R} e^{R / L} \\
\therefore B & =-A e^{-R R / L} \text { and the solution becomes: } \\
n & =\frac{A}{r}\left(e^{-r / L}-e^{+(r-2 R) / L}\right)=\frac{2 A}{r} e^{-R / L} \sinh \frac{R-r}{L}
\end{aligned}
$$

The constant A may then be determined by equating the number of neutrons nassing throug a very small sphere to the number produced per second by the source.

Point Source in en Incinitely Inns Column

Up until now the solutions to the diffusion equation that we have found have involved only a few terms. In general such representations will not satisfy the boundary conditions. Instead we must have recourse to more complex methods, (e.g. the use of Fourier Series). As an illustration of such a problem we can take the case of a point source embedded in a rectangular medium of length a in
both x and y directions but infinite in extent in the + and $-a$ directions. We take axes such that the source which is at the center of the medium is at the point ($0,0,0$). The general solution of the equation

$$
\begin{aligned}
& \nabla^{2} n-\frac{n}{L^{2}}=0 \text { is: } \\
& n=\sum_{m n} A_{m n} \cos \frac{m^{\pi} x}{a} \cos \frac{n \pi x}{a} e^{-|a| / b_{m n}}
\end{aligned}
$$

To determine $b_{m n}$ we can use the fact that each term separately must satisfy the differential equation. Hence $b_{m n}$ is given by the relation:

$$
-\frac{n^{2} \pi^{2}}{a^{2}}-\frac{m^{2} \pi^{2}}{a^{2}}+\frac{1}{b_{m n}^{2}}=\frac{1}{B^{2}}
$$

To find the coefficients $A_{m n}$ we consider the fact that we have a point source, Such a source can be represented as $\delta(x, y)$ where δ stands for the Dirac delta function. Here we are assuming a source of slow neutrons, though in practice a fast neutron source is used. Let us expand $\delta(x, y)$ in a Fourier series.

$$
\text { i.e. } \delta(x, y)=\sum_{m n} B_{m n} \cos \frac{m^{\pi} x}{a} \cos \frac{n^{n} y}{a}
$$

We determine the $B_{m n}$'s as follows:

$$
\begin{gathered}
\int_{-\frac{a}{2}}^{\frac{a}{2}} d x^{\frac{a}{2}} \int_{-\frac{a}{2}} d y \delta(x, y) \cos \frac{m^{\pi} x}{a} \cos \frac{m \pi y}{a}=1 \text {. Gy the definction of the } \\
B_{m n} \int_{-\frac{\pi}{2}}^{\frac{a}{2}} \cos ^{2} \frac{m^{\pi} x}{a} d x \int_{-\frac{a}{2}}^{\frac{a}{2}} \cos ^{2} \frac{n^{\pi} y}{a} d y=\frac{a^{2}}{4} B_{m n}=1 \\
\therefore B_{m n}=\frac{4}{a^{2}}
\end{gathered}
$$

To relate the A's and B's we must use the fact that the number of neutrons flowing out of the plane $z=0$ per second in a given mode must equal the number produced per second in that mode. The latter is equal to $B_{m n}$
Number flowing out $\left.=\frac{2 \lambda v}{3} \frac{\partial B_{m n}}{\partial z}\right]_{z=0}=\frac{2 \lambda v}{3 b_{m n}} A_{m n} \cos \frac{m^{n} x}{a} \cos \frac{n^{\pi} y}{a}$

$$
\begin{aligned}
\therefore B_{m n} & =\frac{4}{a^{2}}=\frac{2 \lambda v}{3 b_{m n}} A_{m n} \\
A_{m n} & =\frac{6 b_{m n}}{\lambda \cdot v^{2}}
\end{aligned}
$$

Hence our solution is:

$$
n=\sum_{m n} \frac{6 t_{m n}}{\lambda v^{2} a^{2}} \cos \frac{m^{\pi} x}{a} \cos \frac{n^{\pi} y}{a} e^{-|z| / b_{m n}}
$$

If the source strength were Q instead of 1 the above solution must be multiplied by a factor of Q. We note that $B_{m n}$ decreases rapidy with increasing m and n and so at great distances the only significant term in our series will be the first. Thus at great distances from our source:

$$
n=\frac{6 b_{11}}{\lambda v a^{2}} Q \cos \frac{\pi x}{a} \cos \frac{\pi y}{a} e^{-|z| / b_{11}}
$$

This presents a very convenient method of measuring L since the decrease of n with z enables us to find b_{11} and from b_{11} we can readily compute L.

Solution of the Diffusion Equation in an Infinite Medium with gas a Function of Position.
of the diffusion equation with a term due to the production of neutrons (q) by a rather special method. The equation involved is:

$$
\frac{\lambda v}{3} \nabla^{2} n-\frac{v n}{\triangle}+q=0
$$

If $q=0$, the solution is (assuming an infinite medium spherical symmetry)

$$
n=\frac{A}{r} e^{-r / L} \quad \text {, where } A \text { is some constant. }
$$

As shown in a previous lecture A can be related to the source strength Q by:

$$
A=\frac{30}{4 \pi \lambda v}
$$

Hence:

$$
n=\frac{3 Q}{4 \pi \lambda \cdot v} \quad \frac{e^{-r / L}}{r}
$$

Suppose now $q=f(x, y, z)$.
We can solve the problem as follows: The solution for a point source has the form given above. Our function q can then be treated as an infinite number of point sources continuously distributed throughout the medium. The total effect will then be the sum of the effects due to each point. If r is the point at which we want to know the neutron density and r^{\prime} the point where our source is located we have:

$$
n(r)=\int_{\text {vol }} \frac{3 q\left(r^{\prime}\right)}{4 \pi \lambda .} \frac{1}{\left|r-r^{\prime}\right|} e^{-\left|r^{\prime}-r^{\prime}\right|} d \text { vol' }
$$

Sometimes the above integral can be readily evaluated and under such conditions represents a very great simplification of the problem. In utilizing this method it is very important to take advantage of whatever symmetry the problem offers. Thus if plane
symmetry were exhibited the appropriate plane solution of the diffusion equation should be chosen. If cylindrical symmetry were the case it would be well to find the solution for such conditions and then apply the method here followed of integrating to get the contributions of the many point sources making up the q function.

Albedo

A quantity of considerable utility in neutron diffusion is the albedo or reflection coefficient. If a finite medium with a point source were left in empty space, the neutrons reaching the bounding surface would diffuse out and be lost. Now, if another medium were surrounding the first one, some of the neutrons reaching the boundary would be reflected back in, thus increasing the neutron density in our original medium. The magnitude of the reflection effect is measured by the albedoy of the, in this case, outside medium. Actually the albedo of a medium will depend, not only on the medium, but also on the angular distribution of neutrons falling on the medium. We will neglect this effect.

Albedo of Various Media.

For this purpose we must consider the angular distribution of neutrons at a point. We let be the cosine of the angle between the velocity of the neutron and the radius vector and write

$$
\begin{aligned}
& n v(r \mu)=\frac{1}{2}[A(r)+\mu B(r)] \\
& n v(r)=\int_{-1}^{1} n v(r, \mu) d \mu=A(r)
\end{aligned}
$$

The net flow of neutrons $=-\frac{\lambda}{3} \frac{d(n v)}{d r}=-\frac{\lambda}{3} A^{\prime}(r)=\int_{-1}^{1} n v(r \mu) \mu d \mu=\frac{B(r)}{3}$

$$
\begin{aligned}
\text { so } \quad B(r) & =-\lambda A^{\prime}(r) \\
\text { and } \quad n v(r, \mu) & =\frac{1}{2} A(r)-\mu \lambda A^{\prime}(r)
\end{aligned}
$$

The total flow in the positive radial direction is called the flow out.

$$
\text { flow out }=\int_{0}^{1} n v(r, \mu) \mu d \mu=\frac{1}{4}\left[A(r)-\frac{2}{3} \lambda^{\prime} A^{\prime}(r)\right]
$$

The total flow in the negative radial direction is called the flow in.

$$
\gamma=\text { flow in }=\int_{0}^{-1} n v(r, \mu) \mu d \mu=\frac{1}{4}\left[A(r)+\frac{2}{3} \lambda A^{\prime}(r)\right]
$$

Now the albedo of the inside surface R of the medium is

$$
\begin{aligned}
& 2=\frac{\text { flow in }}{\text { Low out }}=\frac{A(R)+2 / 3 \lambda A^{\prime}(R)}{A(R)-(2 / 3) \lambda A^{\prime}(R)}=\frac{n v(R)+\frac{2}{3} \lambda \frac{d(n v)}{d r} R}{n v(R)-\frac{e}{3} \lambda \frac{d(n v)}{d r} R} \\
& \left.\nu=\frac{\left.1+\frac{2}{3} \frac{\lambda}{n} \frac{d n}{d r}\right)_{R}}{\left.1-\frac{2}{3} \frac{\lambda}{n} \frac{d n}{d r}\right)_{R}} \text { or }-\frac{\lambda}{n} \frac{d n}{d r^{\prime}}\right)_{R}=\frac{3}{2} \frac{1-2}{1+2}
\end{aligned}
$$

We can take $n=\frac{1}{r} e^{-r / L}$

$$
\begin{aligned}
& \text { so }-\frac{d n}{d r}=\frac{1}{r} e^{-r / L}\left(\frac{1}{r}+\frac{1}{L}\right) \\
& r=\frac{1+\frac{2}{3}\left(\frac{\lambda}{R}+\frac{\lambda}{L}\right)}{1+\frac{2}{3}\left(\frac{\lambda}{R}+\frac{\lambda}{L}\right)}
\end{aligned}
$$

The larger is R the better the albedo and for R, the albedo approaches that of a plane

$$
\gamma=\frac{1-\frac{2}{3} \frac{\lambda}{\bar{L}}}{1+\frac{2}{3} \frac{\lambda}{\tilde{L}}}
$$

If in addition we make the medium non-absorbing, $L=C 0, \eta=1$. This is actually obvious: any neutron entering a non-absorbing half infinite medium will eventually return.

It is apparent that the formula breaks down when R is small (γ would be negative) compared to λ. This is when diffusion theory breaks down.

Let us look at the inverse problem, the albedo of a sphere Here

$$
\begin{gathered}
n=\frac{1}{r} \sinh \frac{r}{L} \\
r=\frac{-d n}{d r}=\frac{n}{r}-\frac{\operatorname{coth}(r / L)}{L} n \\
\text { flow out in }
\end{gathered}=\frac{1-\frac{2}{3}\left(\frac{\lambda}{I} \operatorname{coth} \frac{R}{L}-\frac{\lambda}{R}\right)}{1+\frac{2}{3}\left(\frac{\lambda}{L} \operatorname{coth} \frac{R}{L}-\frac{\lambda}{R}\right)} .
$$

For an infinitely long cylindrical hole, the differential equation to be solved is

$$
\frac{1}{r} \frac{d}{d r}\left(r \frac{d n}{d r}\right)-\frac{n}{2}=0
$$

so $n=K_{0}\left(\frac{r}{L}\right)$ a Bessel function of second kind of imaginary argument. For $\frac{R}{L}$ small we get

$$
z=\frac{1-\frac{2 \lambda}{3 R} \frac{1}{\ln (2 L / C R)}}{1+\frac{2 \lambda}{3 R} \frac{1}{\ln (2 L / C R)}}
$$

$$
\underset{\text { stank }}{\ln c=\text { Euler }}
$$

This formula shows a surprising result that for $L=\infty$ (no absorbLion) $\gamma=1$ 。
Boundary conditions expressed in terms of Albedo
The boundary conditions at the interface of two media are,
in diffusion theory $n_{1}=n_{2}$ at the boundary

$$
\text { and } \frac{\lambda_{1} v}{3} \frac{d n_{1}}{d r}=\frac{\lambda_{2} v}{3} \frac{d n_{2}}{d r} \text { at the boundary }
$$

Instead of one of these we can use the ratio

$$
\left.\left.\frac{\lambda_{1}\left(d n_{1} / d r\right)}{n_{1}}\right)_{B}=\frac{\lambda_{2}\left(d n_{2} / d r\right)}{n_{2}}\right)_{B}
$$

Now this ratio for a medium can be written in terms of the albedo so

$$
\left.-\frac{\lambda_{1}\left(\mathrm{dn}_{1} / \mathrm{dr}\right)}{n_{1}}\right)_{B}=\frac{3}{2} \frac{1-2_{2}}{1+2_{2}}
$$

Is another possible form of the boundary condition.
Extrapolated End Point
Let us examine the neutron density in a plane semi-infinite non-absorbing slab. We will show that if the neutron density inside the slab is continued to the edge and beyond it would vanish at a distance $\frac{2}{3} \lambda$ beyond the edge.

We have, as before

$$
n v(x, \mu)=\frac{1}{2}\left(A(x)-\mu \lambda^{\prime}(x)\right)
$$

The solution deep in the slab will be $n v=A(x)=a\left(I+\frac{X}{I}\right)$ where I is the extrapolated end point. Since $A(x)=0$ for $x=-I$

$$
\begin{aligned}
A^{\prime}(x) & =\frac{\dot{E}}{L} \\
n v(x, \mu) & =\frac{a}{2}\left[1+\frac{x}{L}-\mu \frac{\lambda}{L}\right]
\end{aligned}
$$

The total flow in the $+x$ direction is

$$
\frac{a}{4}\left[1+\frac{x}{L}-\frac{2}{3} \frac{\lambda}{L}\right]
$$

which must vanish at $x=0$ since there are no neutrons entering the slab.

$$
L=\frac{2}{3} \lambda
$$

An exact solution of this problem leads to $L=.7104 \lambda$ actually. Angular Distribution of neutrons Emerging from a Surface

$$
\text { The } \frac{\text { collisions }}{\text { see } \mathrm{cm}^{2}} \text { at } x \text { are } \frac{\operatorname{adx}}{\lambda}\left(1+\frac{3}{2} \frac{x}{\lambda}\right)
$$

We may consider these neutrons uniformly distribute in angle and calculate the probability of escape from the surface at angle μ (per unit range of $\mu)$

$$
\begin{aligned}
n v(\mu) & =\int_{0}^{\infty} \frac{a}{2 \lambda}\left(1+\frac{3}{2} \frac{x}{\lambda}\right) e^{-\frac{x}{p \lambda} d x} \\
& =\frac{a}{2}\left(\mu+\frac{3}{2} \mu^{2}\right)
\end{aligned}
$$

So then the flux from the surface $\sim \cos \theta+\frac{3}{2} \cos ^{2} \theta$

Actual Distribution Near a Plane Boundary of a Non-absorbing Medium

$$
\text { Actual ancular distribution in } n \sim \mu+\sqrt{3} \mu^{2} \ldots \ldots .
$$

The extrapolation of the asynptotic solution vanishes at . 7104 ㄱrom the surface. Very close (in a mean free path) to the surface the neutron density decreases and has a singularity in slope at the surface. The value of n at the surface is $\frac{1}{.7104} \sqrt{3}$ of the value of the straight line solution at the surface.

February 24, 1944

LECTURE SERIES ON NUCLEAR PHYSICS

Sixth Serles: Diffusion Theory
Lecturer: R. F. Christy

IECTURE 39: THE SLOWING DOWN OF NEUTRONS

Fermi's Age Equation

The preceding lectures have all dealt with the diffusion of thermal neutrons. Let us now consider how neutrons coming from a fast neutron source are slowed down, In the discussion the quantity q will be v riw converient, iv, is defined as follows:

$$
q=\text { No, of neatrons crossing eherg } f \text { per oc per sec }
$$

It is obvious that the tctal ne of neutrons crossing energy E must equal the no. produced per second. Hence from our definition of q we must have:

$$
\int_{\text {vol }} q(r, E) d \text { vol }=Q
$$

where Q is the total number of neutrons produced per second.
The mechanism by which the neutrons are slowed down is that of collision with other particles. The amount of kinetic energy lost by a neutron in a given encounter may be computed by the methods of classical mechanics as applied to elastic collisions. In general, if a neutron hits a particle of mass M the ratio of its original energy (E) to its final energy (E^{\prime}) is a function both of the mass M and the angle between the original path of the neutron
and its path after the collision. By appropriate averaging over all angles we can conclude that

$$
\left(\frac{E^{\prime}}{E}\right)_{a v}=G(M)
$$

where C is a constant which depends only on M. This relation is usually written as:

$$
\Delta \ln E=\ln \frac{E}{E^{i}}=\xi_{M}
$$

where ξ is the average of $\ln \frac{E^{\prime}}{E^{1}}$. It can be shown that:

$$
\begin{aligned}
& \xi_{M}=1-\frac{(M-1)^{2}}{2 M} \ln \frac{M+1}{M-1} \\
& \xi_{M}=\frac{2}{M+1}
\end{aligned}
$$

where the approximation is better for heavier nuclei (i.e. for larger M). A few sample values are:

$$
\begin{array}{ll}
\text { for hydrogen: } & \xi_{H}=1 \\
\text { for deuterium: } & \xi_{D}=0.725 \\
\text { for carbon: } & \xi_{C}=0.158 \\
\text { for oxygen: } & \xi_{0}=0.120
\end{array}
$$

Using the above we may find the mean number of collisions suffered by a neutron in slowing down. Suppose the neutrons start off with energies of 2 Mev and end up at thermal energies (about $1 / 30 \mathrm{ev})$. Then the mean number of collisions:

$$
\frac{\ln \left(2 \times 10^{6} \times 30\right)}{\xi}=\frac{18}{\xi}
$$

The treatment now to be presented for slowing down is somewhat limited in its appiication - even more so than is ordinary diffusion theory. In the latter case our only important approximation was that λ grad n be small. In slowing down theory it will be demanded that the number of collisions be large and also that the mean free path (λ) not vary much between collisions. These assumptions are necessary if we are to be able to replace the essentially discontinuous process of energy loss by collision by a continuous process. (It may be noted that the most common slowing down substances, such as paraffin and water, fail to satisfy the conditions very well and so any treatment of paraffin, water, and similar materials by the methods given here may result in considerable error.)

The starting point in treating slowing down phenomena is the so-called Fermi Age Equation. We shall give here a non-rigorous justification rather than a formal derivation of the equation. Our standard diffusion equation was:

$$
\frac{\lambda v}{3} \nabla^{2} n=\frac{\delta n}{\delta t}
$$

By analogy we write:

$$
\frac{\Delta \Delta v}{3} \nabla^{2} q=\frac{\delta q}{\delta t}
$$

If we consider t in this last equation to be a variable depending on the past history of the neutrons we can relate this to the neutron energy. Thus: $\frac{d(\ln E)}{d t}=\triangle \ln E$ per collision λ number of collisions per second.

But $\triangle \ln \mathrm{E}$ per collision $\equiv \xi_{\infty}$ and number of collisions per second $=\frac{V}{\lambda}$

$$
\begin{aligned}
\therefore & \frac{\Delta(\ln E)}{d t}=\xi \frac{V}{\lambda} \\
& d t=\frac{\lambda d(\ln E)}{\xi v}
\end{aligned}
$$

Hence:

Then our original equation becomes:

$$
\nabla^{2} g=\frac{. g g}{\frac{\lambda^{2}}{3} \delta \ln E}
$$

We introduce the quantity τ (the "Age".) by the relation:

$$
d \tau=\frac{\lambda^{2}}{3 \xi} d \ln E
$$

On substituting we get:

$$
\nabla^{2} g=\frac{\delta g}{\delta x}
$$

We note that the "Age" has the dimensions of length squared. It plays very much the same role in slowing down as the quantity L^{2} did in thermal neutron diffusion. τ is a function of the energy (E) to which the neutrons have been slowed and may be found from the relation:

$$
\tau=\int_{E}^{E_{O}} \frac{\lambda^{2}}{3 \xi} d(\ln E)
$$

where E_{O} is the energy with which the neutrons leave the source.

Point Source Solution

As our first example of the use of the Age Equation let us
calculate the distribution of neutrons in space and energy coming from a point source. We shall consider an infinite medium with spherical symmetry. Our equations are:

$$
\tau=\int_{E}^{E_{0}} \frac{\lambda^{2}}{3 \xi} \frac{d E}{E}: \nabla^{2} g=\frac{\delta g}{\delta \tau}
$$

The equation involving the Laplacian reduces to:

$$
\frac{\delta^{2}(r g)}{\delta r^{2}}=\frac{\delta^{2}(r g)}{\delta \tau}
$$

We shall solve this equation by the standard method of separation of variables:

$$
\begin{array}{ll}
\text { Let } & r q=f(r) \varnothing(\tau) \\
\text { Then } & \varnothing \frac{d^{2} f}{d r^{2}}=f \frac{d \emptyset}{d \tau} . \\
& \frac{1}{f} \cdot \frac{d^{2} f}{d r^{2}}=\frac{1}{\varnothing} \cdot \frac{d \emptyset}{d \tau}
\end{array}
$$

Since the left hand side is a function of r alone and the right of τ alone we must have:

$$
\frac{1}{f} \cdot \frac{d^{2} f}{d r^{2}}=\frac{1}{\varnothing} \cdot \frac{d \varnothing}{d \tau}=-k^{2}
$$

Thus we get the two equations:
(1) $\frac{d^{2} f}{d r^{2}}+k^{2} f=0$
(2) $\frac{d \emptyset}{d \tau}+k^{2} \varnothing=0$

The solution of (1) is: $f=A \sin k r+B \cos k r$ The solution of (2) is: $\phi=e^{-k^{2} \tau}$
\therefore Solution is: $q=\frac{1}{r}(A \sin k r+B \cos k r) e^{-k^{2} \tau}$
where A and B are arbitrary constants depending on k. Since q must stay finite at $r=0$, we must have $B=0$.

Hence: $\quad q=\frac{A}{r}$ sin $k r e^{-k^{2} \tau}$
Since we have no boundary conditions to be satisfied, any real value of k will satisfy our equations. The general solution, which is the sum of all possible solutions, is then found by by multiplying the above expression by $d k$ and integrating from - ∞ to $+\infty$.

$$
\text { i.e. } \quad q=\frac{1}{r} \int_{-\infty}^{\infty} A(k) \sin k r e^{-k^{2}} \tau_{d k}
$$

Using the fact that we have a point source we can determine the function $A(k)$. We know that:

$$
q(\tau=0)=\operatorname{c\delta } \delta(r)
$$

where C is a constant to be determined later which depends only on the source strength $Q . \quad \delta(r)$ is a delta function such that:

$$
\delta(r)=0, r \neq 0 \text { and } \quad \int_{0}^{\infty} r^{2} \delta(r) d r=1
$$

Substituting in the above we get:

$$
r C \delta(r)=\int_{-\infty}^{\infty} A(k) \sin k r d k
$$

As the integrand is symmetric (as will be seen from later results) written as:

$$
r C \delta(r)-2 \int_{0}^{\infty} A(k) \sin k r d k
$$

Multiplying by $\frac{1}{\sqrt{2 \pi}}$ yields

$$
\frac{r C \delta(r)}{\sqrt{2 \pi}}=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} A(k) \sin k r d k
$$

Now the Fourier Sine Transform tells us that

$$
\begin{array}{ll}
\text { If } \quad f(x)=\sqrt{\frac{巳}{\pi}} & \int_{0}^{\infty} \varnothing(u) \sin x u d u \\
\text { then: } \quad \phi(u)=\sqrt{\frac{Q}{\pi}} \quad \int_{0}^{\infty} f(x) \sin u x d x
\end{array}
$$

Applying this to our problem:
6

$$
\begin{aligned}
A(k) & =\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \frac{c}{\sqrt{2 \pi}} r \delta(r) \sin k r d r \\
& =\frac{c}{\pi} \int_{0}^{\infty} r^{2} \delta(r) \frac{\sin k r}{r} d r
\end{aligned}
$$

By the definition of the delta function this becomes

$$
A(k)=\frac{C}{\pi} \lim _{r \rightarrow 0} \sin \frac{k r}{r}=\frac{k C}{\pi}
$$

Hence

$$
g=\frac{c}{\pi r} \int_{-\infty}^{\infty} \frac{k}{\infty} \sin k r e^{-k^{2} \tau} \cdot d k
$$

Substituting $\frac{e^{i k r}-e^{-i k r}}{2 i}=\sin k r$ and then multiplying and dividing by $e^{r^{2} / 4 \tau}$ yields.

$$
g \frac{C e^{-r^{2} / 4 \tau}}{2 \pi i r} \int_{-\infty}^{\infty}\left(e^{-\tau(k-i r / 2 \tau)^{2}}-e^{-\tau(k+i r / 2 \tau)^{2}}\right) k d k
$$

To evaluate the first integral let

$$
z=\left(k-\frac{i r}{2 \tau}\right)
$$

Then:

$$
-\int_{-\infty}^{\infty} e^{-\tau(k-i r / 2 \tau)^{2}} k d k=\int_{-\infty}^{\infty} e^{-\tau_{z}^{2}} z d z+\frac{i r}{2 \tau} \int_{-\infty}^{\infty} e^{-\tau_{z}^{2} d z}
$$

The first term on the right yields zero while the second becomes:

$$
\frac{i r}{2 \tau^{3 / 2}} \sqrt{\pi}
$$

Similarly

$$
-\int_{-\infty}^{\infty} e^{-\tau(k+i r / 2 \tau)^{2}} k d k=\frac{i r}{2 \tau^{3 / 2} \sqrt{\pi}}
$$

Thus:

$$
g=\frac{C e^{-r^{2} / 4 \tau}}{2 \pi^{1 / 2} \tau^{3 / 2}}
$$

To find C we remember that:

$$
\int_{\text {Vol }} q d \operatorname{vol}=Q
$$

$$
\therefore c \int_{-\infty}^{\infty} r^{2} d^{-r^{2} / 4 \tau} d r=\frac{\tau^{3 / 2} Q}{2 \pi 1 / 2}
$$

Let $u=r^{2} / 4 \tau$ then:

$$
\begin{gathered}
\int_{0}^{\infty} r^{2} e^{-r^{2} / 4 \tau} d r=4 \tau^{3 / 2} \int_{0}^{\infty} u^{1 / 2} e^{-u} d u=2 \pi^{1 / 2} \tau^{3 / 2} \\
\therefore C=Q / 4 \pi
\end{gathered}
$$

Hence:

$$
g=\frac{Q_{e}^{-r^{2} / 4 \tau}}{(4 \pi \tau)^{3 / 2}}
$$

That this result is what we should expect is easily seen from the following argument. Since at $r=2 \sqrt{\tau} \quad q$ has reduced to i / e of its value at the origin, we see that τ is a measure of the width of curve representing q. ' If τ ' were very small our curve should be very narrow (a).

This is physically plausible, since small τ in dicates fast neutrons and these we would expect to be grouped near the source.

On the other hand large means slower neutrons. These would be expected to be more uniformly distributed than the faster ones. That is just what our formula leads us to conclude.

Plane Source Representations.

If instead of a point source we have an infinite plane source the solution would be of the form:

$$
q=Q \frac{e^{-z^{2} / 4 \tau}}{\sqrt{4 \pi \tau}}
$$

$$
Q=\text { neuts } / \mathrm{cm}^{2} \text { sec from }
$$

Let us suppose now that we have a medium finite and of width (a) in both x and y directions and infinite in the - and $-z$ directions. Assume a point source at ($0,0,0$). A solution of the equation:

$$
\nabla^{2} g=\frac{\delta g}{\delta \tau}
$$

which satisfies the boundary conditions at $x=-a / 3, y=-a / 2$ is:
$\mathrm{q} \quad c(k) A, \cos \frac{\ell \pi x}{a} \cos \frac{m \pi x}{a} \cos k z e-p^{2} \tau$
where \mathcal{L} and n are positive integers, $C(k)$ is a constant depending on k, and

$$
p^{2}=\frac{\left(l^{2}+m^{2}\right)}{a^{2}} \pi^{2}+k^{2} . \quad(k \text { is any real number })
$$

The general solution is then found by adding up all possible solutions. This means summing over m and ℓ and integrating over k. Thus

$$
q=\int_{-\infty}^{\infty} C(k) \sum_{m, l} A{ }_{l, m} \cos \frac{l \pi x}{a} \cos \frac{l \pi y}{a} \cos k z e^{-p^{2} \tau} d k
$$

Applying the orthogonality principle, integrating, and using the fact that a point source may be represented by a delta function we get:

$$
q=\frac{16 Q}{a \sqrt{\pi \tau}} \sum_{l, m} e^{-\left(l^{2}+m^{2}\right) \pi^{2} \tau / a^{2}} \cos \frac{l \pi x}{a} \cos \frac{l \pi y}{a} e^{-z^{2} / 4 \tau}
$$

We note that for $\tau \gg$ a (ie. for the lower energy neutron) the higher harmonics die out. Hence, with this approximation our expression becomes:

$$
q=\frac{16 Q}{a^{2} \sqrt{\pi \tau}} e^{-2 \pi^{2} \tau / a^{2}} \cos \frac{\pi x}{a} \cos \frac{\pi y}{a} e^{-z^{2} / 4 \tau}
$$

February 29th, 1944

LECTURE SERIES ON NUCLEAR PHYSICS

Sixth Series: Diffusion Theory Lecturer: R. F. Christy

IECTURE V: THE SI_OWING DOWN OF NEUTRONS IN WATER

In this lecture we shall consider the following question. What happens when a $\mathrm{Ra}-\mathrm{Be}$ source of neutrons is placed in a large water tank? What is the distribution of neutrons in space and energy?

Suppose we were to measure the distribution by means of a cadmium covered indium foil. Such a counter records the number of neutrons of the indium resonance energy (slightly above 1 ev). Plotting $\hbar\left(r^{2} A\right)$ against r (where r is the distance from the source and A is the activity measured) we obtain results such as those in the diagram.

We note that at large values of \mathbf{r} the curve is practially straight, This implies that in that region:

$$
A \sim \frac{1}{\Gamma^{2}} e^{-r / \lambda}
$$

We also note that the curve of measured neutron density differs considerably at large r from what it would look like if it followed a Gaussian distribution (dotted line).

The above distribution of neutrons is readily recognized as being the same as that of neutrons from a point source which have not yet had any collisions. That this is so is seen from the fact that the probability that a neutron will go a distance r without a collision is $e^{-r / \lambda}$ and that we must have a factor of $1 / 4 \pi r^{2}$ to satisfy geometrical considerations.

Now it is easy to demonstrate using classical mechanics that in an elastic collision with a proton a neutron can never be scattered at an angle greater than 90°. Hence the average scattering angle will be between 0° and 90°. We see, therefore, that on colliding with protons the direction of the neutrons is not much changed and so we would expect the neutron density to follow a law similar to the above (i.e. we expect $A \sim\left(1 / r^{2}\right) e^{-r / \lambda}$ where λ Is actually somewhat greater than the true mean (free path). A further reason why we should expect such a distribution is seen when we remember that the scattering cross-section for hydrogen decreases rapidly with increasing neutron energy. Thus the mean free path is largest at higher energies and so most of the distance traveled by the neutrons is covered in the first few collisions. But in the first few collisions the $\left(1 / r^{2}\right)_{e}^{-r / \lambda}$ law is followed. We conclude
from this argument also that the last is the law we should expect to find for the neutron density for large r.

A concept which we shall find useful in considering our problem is that of the mean square distance $\overline{r^{2}}$ traveled by a neutron. This quantity is defined by:

$$
\overline{r^{2}}=\frac{\int_{0}^{\infty} r^{4} f(r) d r}{\int_{0}^{\infty} r^{2} f(r) d r}
$$

where $f(r)$ is the functional dependence of the neutron density on the distance (r) from the source.

As an example let us calculate $\overline{r^{2}}$ for the case where our neutron density follows the $\left(1 / r^{2}\right)_{e^{-r}} \lambda$ law to the first collision and then follows an age diffusion law (i.e. proportional to $e^{-\mathrm{r}^{2} / 4 \tau}$). Let us denote the first portion by the subscript (1) and the second by the subscript (2). Then:

$$
\begin{aligned}
& \overline{r^{2}}=\overline{r_{1}^{2}}+{r^{2}}_{2}^{2} \\
& \overline{r^{2}}=\frac{\int_{0}^{\infty} r^{2} e^{-r / \lambda} d r}{\int_{0}^{\infty} e^{-r^{2} / \lambda} d r}=\lambda^{2} I^{\prime}(3)=2 \lambda^{2} \\
& r_{2}^{2}= \\
& \int_{0}^{\infty} r^{-4} e^{-r^{2} / 4 \tau} d r \\
& r^{2} e^{-r^{2} / 4 \tau} d r
\end{aligned}
$$

Substituting

$$
x=\frac{r^{2}}{4 \tau}
$$

we get:

$$
\overline{r_{2}^{2}}=\frac{16 \tau^{3 / 2} \int_{0}^{\infty} x^{3 / 2} e^{-x} d x}{4 \tau^{3 / 2} \int_{0}^{\infty} x^{1 / 2} e^{-x} d x}=4 \tau \frac{\Gamma(5 / 2)}{\Gamma(3 / 2)}=6 \tau
$$

Hence:

$$
\begin{array}{r}
r^{2}=2 \lambda^{2}+6 \tau \\
\begin{array}{c}
\text { presage } \\
\text { diffusion }
\end{array} \quad \text { age } \\
\text { diffusion }
\end{array}
$$

For water we know $\bar{r}^{2}=280$ om for a Ra-Be source. Furthermore, from our observed curve for $\ln \left(r^{2} A\right)$ we can get λ It turfs out that the $2 \lambda^{2} \approx 180$. Therefore

$$
\tau \approx \frac{280-180}{6} \approx 16 \frac{2}{3} \mathrm{~cm}^{2}
$$

In order to calculate the distribution of neutrons lot us consider the following ;

From the point source the neutrons go to a point ${ }^{n}$ following the $\left(1 / r^{2}\right) e^{-r / \lambda}$ law From r_{1} they go a distance file by age diffusion (i.e, following $e^{-r^{2} / 4 \tau}$). We can thus regard the point r_{1} as a source for the age diffusion which proceeds after the neutron reaches r_{1}. Integrating over the whole volume to get the contribution of each such source we get:

$$
\begin{aligned}
g\left(\tau, r_{2}\right) & =\int_{v o 1} \frac{e^{-r_{1} / \lambda}}{4 \pi r_{1}^{2} \lambda} \frac{e^{-r^{2} 12 / 4 \tau}}{4(\pi)^{3 / 2}} d v o 1_{1} \\
& =2 \pi \int_{0}^{\infty} \frac{e^{-r_{1} / \lambda} r_{1}^{2}}{4 \pi r_{1}^{2} \lambda} d r \int_{0}^{\pi} \frac{e^{-r_{12}^{2 / 4 \tau}} \sin \theta d \theta}{(4 \pi \tau)^{3 / 2}} \\
r_{12} & =r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \theta
\end{aligned}
$$

Substituting

$$
\cos \theta=\mu
$$

we get

$$
\begin{aligned}
& g=\frac{1}{2 \lambda} \int_{0}^{\infty} e^{-r_{1} / \lambda} d r_{1} \int_{-1}^{1} \frac{e^{-\left(r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\right) \mu / 4 \tau} d \mu}{(4 \pi \tau)^{3 / 2}} \\
& \int_{-1}^{1} e^{-\left(r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}\right) \mu / 4 \tau} d \mu \\
& \\
& =e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 \tau \frac{2 \tau}{r_{1} r_{2}}\left(e^{r_{1} r_{2} / 2 \tau}-e^{-r_{1} r_{2} / 2 \tau}\right)} \\
& g=\frac{1}{\lambda(4 \pi)^{3 / 2} \tau^{1 / 2}} \int_{0}^{\infty} \frac{e^{-r_{1} / \lambda} e^{-\left(r_{1}^{2}+r_{2}^{2}\right) / 4 \tau}\left(e^{\left.r_{1} r_{2} / 2 \tau-e^{-r_{2} / 2 \tau}\right)} d r_{1}\right.}{r_{1} r_{2}}
\end{aligned}
$$

This integration with respect to r_{1} cannot, unfortunately, be done analytically. To get an approximate analytic solution we can do the following: Approximate the distribution of $\left(1 / r^{2}\right) e^{-r / \lambda}$ by $(1 / r) e^{-r / L}$. In this form we can do the integral. I should be chosen so that the mean square distance traveled (x^{2}) comes out the same. Originally F^{2} was $2 \lambda^{2}$ so we must have:
$e \lambda^{2}=\frac{\int_{0}^{\infty} r^{3} e^{-r / L} d r}{\int_{0}^{\infty} r e^{-r / L} d r}=L^{2} \frac{\Gamma(4)}{\Gamma(2)}=6 L^{2}$

$$
\therefore L=\frac{\lambda}{\sqrt{3}}
$$

We note particularly how analogous L^{2} is to τ in the slowing down equation. There we found $\bar{r}^{2}=6 \tau$. This analogy can be carried quite far. Under certain conditions we can even replace a slowing down equation by a diffusion equation. However, such an approximation is good only over a small energy range and for r not too large compared to $\sqrt{4 \tau}$.

In our water tank problem it is fairly obvious that a certain percentage of the neutrons emitted by the source per second (Q) will escape from the tank without ever undergoing any collisions and so will not be adequately described in terms of a diffusion equation. To correct for this we can replace our source of strength Q by one of strength Q such that:

$$
\int_{0}^{R} \frac{Q e^{-r / \lambda}}{4 \pi r^{2} \lambda} 4 \pi r^{2} d r=Q^{\prime}
$$

We can then find the distribution by assuming it to be of the form:

$$
\frac{C}{4 \pi r L^{2}} \cdot e^{-r / L}-e^{-(2 R-r) / L}
$$

C is determined from the relation:

$$
\int_{0}^{R} \frac{C}{4 \pi r L^{2}}\left(e^{-r / L}-e^{-(2 R-r) / L}\right) 4 \pi r^{2} d r=Q^{1}
$$

Still another, though more formal, way of treating the
problem is as follows; First consider slowing down and then thermal diffusion.

The standard age equation is:

$$
\nabla^{2} q=\frac{\partial q}{\partial \tau}
$$

With spherical symmetry, this reduces to:

$$
\frac{\partial^{2}(r q)}{\partial r^{2}}=\frac{\partial(r q}{\partial \tau}
$$

Hence:

$$
r q=\sum_{m} A_{n} \sin \frac{m \pi r}{R} e^{-\left(n^{2} \pi^{2} / R^{2}\right) \tau}
$$

where $R:=$ radius of tank.
The coefficients ($A_{n l}$) can be determined as follows: For $\tau=0$ we know the distribution is

$$
q=\frac{1}{4 \pi r^{2} \lambda} Q e^{-r / \lambda}
$$

Hence:

$$
A_{n}=\frac{2}{R} \int_{0}^{R} \frac{e^{-r / \lambda}}{4 \pi r \lambda} \sin \frac{n \pi r}{R} d r
$$

To find the number of thermal neutrons escaping from the tank we consider the ordinary diffusion equation and assume each mode, which we shall denote by the subscript n, satisfies the equation. Thus:

$$
\begin{aligned}
& \nabla^{2} n_{n}-\frac{n_{n}}{L^{2}}+\frac{3}{\lambda_{v}} q_{n}=0 \\
& q n=A_{n} \sin \frac{n \pi r}{R}
\end{aligned}
$$

As a solution assume:

$$
n=C_{n} \sin \frac{n \pi r}{R}
$$

Substituting in our equation we get:

$$
-\frac{n^{2} \pi^{2}}{R^{2}} C_{n}-\frac{1}{L^{2}} C_{n}+\frac{3}{\lambda V} A_{n}=0
$$

Hence:

$$
C_{n}=\frac{\frac{3}{\lambda v} A_{n}}{\frac{1}{L^{2}}+\frac{n^{2} \pi^{2}}{R^{2}}}
$$

Now for the number of neutrons captured per second is:

$$
\int_{v o 1} \frac{v}{\Delta} n d v o 1=\frac{1}{1+\frac{n^{2} \pi^{2} L^{2}}{R^{2}}} \int_{v o 1} d d v o 1
$$

But the $\int_{\text {vol }} q d$ vol is equal to the number of thermal
neutrons produced per second. Hence, the number escaping which is just equal to the number produced minus the number absorbed is:

$$
\left(1-\frac{1}{1+\frac{n^{2} \pi^{2} L^{2}}{R^{2}}}\right) \int_{0}^{R} 4 \pi r \sum_{n} A_{n} \sin \frac{n \pi r}{R} e^{-n^{2} \pi^{2} \tau / R^{2}} d r
$$

LECTURE SERIES ON NUCLEAR PHYSICS

Sixth Series: Diffusion Theory Lecturer: R. F. Christy

LECTURE VI: THE BOLTZMANN EQUATION:

CORRECTIONS TO DIFFUSION THEORY

Boltzmann Equation

In this lecture we shall consider some corrections to the elementary diffusion theory previously treated. More exact methods depend on either the Boltzmann equation or an integral equation. We shall make our approach through the former.

To derive the Boltzmann equation for diffusing neutrons, consider the following: Let $f\left(x, y, z, v_{x}, v_{y}, v_{z}\right)$ be the density of neutrons at the point x, y, z having velocity components between: v_{x} and $v_{x}+d v_{x}, v_{y}$ and $v_{y}+d v_{y}$, and v_{z} and $v_{z}+d v_{z}$. It is readily seen that:

$$
\int_{\text {velocity }} f d \text { vel }=\text { ordinary neutron density }
$$

Now the total cate of change of f with time, which we denote by Df/Dt is:

$$
\begin{gathered}
\stackrel{D E}{D}=\frac{\partial f}{\partial t}+\frac{\partial f}{\partial X} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial s} \frac{d z}{\partial t} \\
\vec{v} \cdot \nabla f+\frac{\partial f}{\partial t}
\end{gathered}
$$

But this total rate of change must be equal to the number of neutrons entering the given velocity range per second minus the number lost by collisions. Let $\sigma=\sigma_{a}+\sigma_{b}$ where σ_{a} is the absorption cross section per unit volume and σ_{S} is the scattering cross section. In terms of these symbols the number of neutrons lost per second is: vof. The number entering the velocity range is found by averaging vo f over all angles. Thus,

$$
\text { Number entering }=\frac{1}{4 \pi} \cdot v \sigma_{a} \int f d \omega .
$$

where

$$
d \omega=\text { element of solid angle. }
$$

When the above are substituted, the Boltzmann equation becomes:

$$
\vec{v} \cdot \nabla f+\frac{\partial f}{\partial t}=-v \sigma f+v \sigma_{a} \bar{f}
$$

where we substitute

$$
\frac{1}{4 \pi} \int f d \omega=f
$$

In passing it is interesting to observe that this equation is considerably simpler than the ordinary Boltzmann equation of kinetic theory. This is due to our neglecting collisions between neutrons and the fact that we have considered the objects hit by the neutrons to remain stationary. The great simplification is that the ordinary Boltzmann equation is non-Inear while our above derived equation is linear and so is considerably more tractable.

Let us consider the Boltzmann equation in the steady
state. Then it reduces to:

$$
\vec{\nabla} \cdot \nabla f=-v \sigma f+v \sigma_{a} \bar{f}
$$

Assume further that we have an infinite medium, that $f \sim e^{k x}$ and is independent of y and z. (This is one of the few instances in which the Boltzmann equation may be solved.)

Our equation becomes:

$$
\begin{aligned}
v_{x} k_{f} & =-v \sigma_{f}+v \sigma_{a} \bar{f} \\
f & =\frac{v \sigma_{a} \bar{f}}{v_{x} k+v \sigma}=\frac{\sigma_{a} \bar{f}}{\sigma+\left(v_{x} / v\right) k}
\end{aligned}
$$

Averaging over all angles and substituting $s=v_{x} / v=\cos \theta$ we have:

$$
\begin{gathered}
\frac{1}{2} \int_{-1}^{1} f \alpha(\cos \theta)=\bar{f}=\frac{1}{2} \int_{-1}^{1} \frac{\sigma_{a} \bar{f}}{\sigma+K s} d s \\
=\frac{\sigma_{\bar{y}} \bar{f}}{2 K} \ln \frac{(\sigma+K)}{(\sigma-K)}
\end{gathered}
$$

Hence

$$
\ln \frac{(\sigma+K)}{(\sigma-K)}=\frac{2 K}{\sigma_{a}}=2 \tan ^{-1} \bar{\sigma}
$$

This equation serves to determine K. The first approximetion for small K / σ and σ_{0} / σ gives $K^{2}=3 \sigma_{a} \sigma_{5}$ which is the same as the diffusion theory result $L^{2}=1 / 3 \sigma_{a} \sigma_{S}$. However, if σ_{a} is not much less than σ_{S} the Boltzmann equation shows that we must correct our value for K. A rather good second order approximation is:

$$
\mu=\sqrt{3 \sigma \sigma a}\left(1-\frac{2}{5} \frac{\sigma}{\sigma}\right.
$$

Hence the value of L^{2} that should be used for more accurate work is:

$$
L^{2}=\frac{\lambda \Lambda}{31-\frac{2}{5} \frac{\lambda}{\Lambda}}, \lambda=\frac{1}{\sigma}
$$

Another important instance in which we can correct ordinary diffusion theory through use of the Boltzmann equation is in the matter of neutron flux. Until now we have used $-(\lambda v / 3) \nabla n$ for the flux (i.e. we have said the diffusion constant D, was $+\lambda v / 3)$. A more accurate D can be obtained as follows: Let us find $\overline{v_{X}}{ }^{f}$. This is:

$$
\begin{aligned}
v_{X} f & =\frac{1}{2} \int_{-1}^{1} \frac{v \bar{f} s}{\sigma+K s} d s \\
& =\frac{1}{2 K} \int_{-1}^{1} v \bar{f} \sigma_{s} d s-\frac{\sigma}{2 K} \int_{-1}^{1} \frac{v f \sigma_{a} d s}{\mathcal{F}_{s}+\sigma} \\
& =-\frac{v \bar{f} \sigma_{a}}{K}=-\frac{V \sigma_{a}}{K^{2}} \frac{\partial \bar{f}}{\partial x}
\end{aligned}
$$

From this we see that a more accurate diffusion constant is:

$$
\frac{v \sigma_{a}}{K^{2}}
$$

Thus, while

$$
D \cong \frac{\lambda r}{3}
$$

the exact relation is:

$$
D=\frac{V \sigma_{a}}{K^{2}}
$$

In all the above work when averaging over angles to find \bar{f} we tacitly assumed σ_{5} to be independent of the angle of scatter-
ing (i.e. Isotropic scattering). If we ald not have spherical symmetry we could have expanded σ_{5} in a power series in $\cos \theta$. Thus

$$
\sigma_{s}=\sigma_{s 0}+\sigma_{S 1} \cos \theta+\cdots
$$

The effect would be to give us a slightly different value for $\overline{\mathrm{S}}$ and would serve to complicate the problem.

Assuming such an expansion nedessary, it turns oft that still an additional correction for K is necessary we get

$$
K=\sqrt{3 \sigma(1-\cos \theta) \sigma_{a}}\left(1-\frac{2}{\frac{2}{3}} \frac{\sigma_{a}}{\sigma(1-\cos \theta)}\right)
$$

Let us introduce a quantity called the transport crose section, defining it by the relation:

$$
\sigma_{t r}=\sigma(1-\cos \theta)
$$

where $\overline{\cos \theta}$ is the average of cos 0 over all collisions. Then for K we obtain the equation:

$$
k=\sqrt{3 \sigma_{t r} \sigma_{a}}\left(1-\frac{2}{5} \frac{\sigma_{a}}{\sigma_{t r}}\right)
$$

For slow neutrons it turns out that:

$$
\overline{\cos \theta}=\frac{2}{3 M}
$$

where M is the mass of the scattering nucleus. Then

$$
\sigma_{t r}=\sigma\left(1-\frac{2}{3 M}\right)
$$

We see that for light elements, such as hydrogen, the correction is quite important. On the other hand, for heavy elements the correction is negligible.

Still another way in which the Boltzmann equation can be
of use to us is in helping us to derive the Age equation. We shall not carry this derivation through here, but will merely indicate the method to be followed.

First assume a certain energy change per scattering. It follows that the number of neutrons entering the given velocity range is $\sim f\left(v^{\prime}\right)$, where v^{\prime} represents the neutron velocity at a somewhat higher energy level. Then we can represent $f\left(v^{\prime}\right)$ by a Taylor series and break off the series after the first two terms. Thus:

$$
f\left(v^{\prime}\right)=f(v)+\left(v^{\prime}-v\right) \frac{\partial f}{\partial v}
$$

This is then substituted in the Boltzmann equation and the same general procedure is followed as previously. We obtain a relation between \bar{f} and $\partial \bar{f} / \partial v$....The quantity \bar{f} is then related to $\nabla^{2} q$ and and $\partial \bar{f} / \partial v$ to $\partial q / \partial \tau$.

Application to Water: Binding Corrections:

To illustrate the application of the formulas we have developed, let us consider the apparent paradox that arises in computing the diffusion length for water. Since the cross sections for hydrogen are much larger than those for oxygen, we need only take hydrogen cross sections into account. σ_{s} for hydrogen when measured turns out to depend on v. At thermal velocities it is about 40 berns. Hence $\sigma_{t r}=40 / 3$. $\sigma_{\text {a for hydrogen is } 0.33 \text {. When }}$ we substitute in our formulas for L^{2} for water we get a value that differs greatiy from the value $L^{2}=8.3 \mathrm{~cm}^{2}$ which has been measured. Here it seems that our formulas are wrong and so must be thrown away. Fairly good agreement, though, can be reached by using the
following argument:
In the calculations it was assumed that the mass of the hydrogen atom is 1. Actually it is effectively greater than this, since the hydrogens are bound to a greater or lesser extent to the heavy oxygen atoms. Actually it is found that for energies greater than 1 ev the hydrogen atom is practically free and so has an effective mass of about 1. For energies less than this, the effective mass is somewhat more than 1.

For epithermal energies (1.e. energies slightly over thermal) σ_{5} for hydrogen is approximately 20. For hydrogen completely bound (this corresponds to 0 energy) theory leads us to expect σ_{5} to be $20\left(\frac{M+1}{M}\right)^{2}=80$. For thermal energies we should then expect σ_{S} to be somewhere between 20 and 80 . The observed cross section is the geometric mean, 40. It corresponds to a hydrogen binding that is about halfway complete.

By analogy we expect the $1-\overline{\cos 0}$ term also to be somewhere between its two extremes of $1 / 3$ and 1 . If we again take the geometric mean $\left(1-\cos \theta=1 / \sqrt{3}\right.$) we get for the $\sigma_{t r}$:

$$
\sigma_{t r}=\frac{40}{\sqrt{3}}
$$

Using this value we get rather good agreement in the measured and computed values for L^{2}.

[^0]: Whe Thghtest nuclel, namely proton, Deuteron and co-particle, have the special names in addition to their more systemic designation giving the name of the element and the mass number.

[^1]: * Actually oloctrons may bo squoozod into a smallor spaco than thoy usualiy occupy in atoms. This heppons in donse stars. The onorgy which is nocessary to givo oloctrons high momontum associatod with thoir more close confinoment is dorivod in this case from gravitation.

[^2]: 1) Tho original caloulation of thoso probabilities
