REPRODUCTION
 COPY

BY THE DECLASSIFICATION COLI ATTEE

8.2

7
.
$-\therefore$.

LA REPOPT 222

MORR DONE BY:
甘. K. Case
C. Richman

REPORT WRITTEN BY:
K. M. Case

PUBLICLY RELEASABLE
Por Bill Pahtinus. Fss-16 Datie: $4-2-96$
By Markunhygen: CrC-14 Date: $513-96$

APPROVED FOR PUBLIC RELEASE UELLAJJItIED

Genergl methods of calculating bias curves for parafifin detector type neutron countors are dereloped. Using these techniques formulas are found for several special cases, including three counters used in the laboratory. Grapha indicating the cause of various undesirable effects and how they cen be recuced are included. These nay be of sasistance in countor design. Varioua approximations of use in calo sulating the response of more complicated counters are indicated.

UNCLASSIFIED

-30

$$
E=
$$

THEORY OF WFITRON COUNTERS USING DROTON RECQILS-FROA PARAFXZ辛
I. Introduction

In this report genoral methods for calculathifghiefresponge Rhamaforistics of. paraffin detector type neutron counters will bo outlined and then applygurse speciall counters. fo make the mothods clear many partioular cesen wial be treated in sone detail. Several of the counters calculated were actually used in the laboratory, while the resulte of the other cases can be used both to see how verious effects can be altered by proper design and, when correctiy combined, to estimate the reaponso of a counter whose nature is too complicnted to permit exact treatment. Fomalas and graphs will bs given for each counter considored.

By a "paraffin dotactor typo noutron oountor" is neant a countor in which a nsutron beam falls on a raciator of some hydrogoneous material causing proton recoils wich are then counted in an ionization chambor. To be definito the hydrogeneous materiad will always be called "paraifin" and the gas in the chamber "argon", although other substances suoh as glyoerol tristearate and xenon may be used as dotector and jomizing gas rospectively。

The sensitivity of a countor is a function of the bias setting. This wo axpreas in texms of the minjuum pulse dise (P) that can be recorded at the given bias. For this discussion we define the sensitivity as:

$$
S(P)=\frac{\text { number of pulses of magnitude greater than } p}{\text { number of recoils in the paraffin }}
$$

(Note that this is not the customary definition of sensitivity. The latter is the number of pulses greater then P per neutron traversing the parsfin It ia our $S(P)$ miltiplied by the paraffin thickness and the hydrogan crossosection per unit volumo)

The difforential sonsitivity (abbreviated D.S.) is given by:

$$
D_{0} S_{0}(P) d P=\frac{\text { number of pulses of nagnitude beiween } P \text { and } P+d P}{\text { number of recoils in the paraffin }}
$$

It is readily seon that: $D_{0} S_{p}=|\mathrm{dS} / \mathrm{dP}|$.
The problem for a given counter will be to calculate the two quantities \mathbb{S} (?) and $D_{0} S_{0}(P)$. In particular it is desirable to know their depondence on electron codo laction paraffin thickness, mall effects, the proton rangas, and the geonetry of this ion chamber.

Although the method to be outlined holds in general, it will be applied with the following simplifications (which are usually guito valid).
a) The incident neutron beam ia monechromatic and perpendicular to the paraffin surface.
b) Variation in paraflin thickneas from point to point on the surface is nogidgible.
c) No appreciable attenuation of the neutron beam is caused by the parafin.
d) Pdge effects cue to varietion of the electric field in the chember are elimino ated by guard rings.

Horeover, in all but one case a rangeoenargy relation of the form $R \sim E^{3 / 2}$ will be used. The exception occurs in one counter where a parafinin range $R=\alpha E 3 / 2+\beta E$ vas assumed.

II. Goneral Theory

The first stop is to find the expression for tho pulse (P) (ioe.e the change in potential difiference bstwaen the chamber electrodes) produced by a recoild proton passing through the chambor. P will in general depenc on n coordinates (q_{1}, q_{2}, \ldots. q_{0} j describing the given proton。 These coordratee usually opecify such things as the angle ar which the proton entors the chember ond the position in thengiafin where tine recoil ordeinates. For simplicity we will firgt consider the case yhore-j dopent
on only one coordinate (q). Express the number of protons heving values of this cos oxdinate between q and $q+d q$. This will be of the form $N(q) d q$. Now dot the number of protons producing a pulse between P and $P+d P$ be $L(P) d P$. Since this muat be the sime as the number of recoils betwesn q and q \& dq we heve:

$$
L(p) d P=N(q) d q
$$

Thus: $L(p)=W(q) d q / d p$. In this formula me must regard q as a function of p give:a by the pulse size formula. More exactily the relation is:

$$
\left.L(p)=\mathrm{N}(\mathrm{q}(\mathrm{P}))| | \frac{\mathrm{dq}}{\mathrm{~d} p} \right\rvert\,,
$$

since negative numbers of protons or of pulses have no aignificance here. If M is the total number of recoils having all values of q, the differential sensitivity is giten by:

$$
\text { D.S. }(P)=L(P) / מ=(1 / N) N(q(P))\left|\frac{d q}{d P}\right|
$$

and the total sensitivity is:

$$
S=\int_{P}^{P_{\max }} \text { D.S. }(P) d P
$$

In the case more than one coordinate is necessary to describe the pulse the fiollowing treatnent can be used. After obtaining a pulsessize formula which says:

$$
P=f\left(q_{1}, q_{2}, \cdots q_{n}\right)
$$

the number of protons having coordinates betweon q_{2} and $q_{2}+\mathrm{dq}_{1}$, q_{2} and.
$q_{2}+d q_{2}-q_{n}$ and $q_{n}+d q_{n}$ is found. (For brevity we will in the future describe this by saying "in the region $q_{2}, q_{2}, \ldots q_{n} "$) This will be of the form:

$$
N\left(q_{1}, q_{2}, \ldots q_{n}\right) d q_{1} d q_{2} \ldots d q_{n}
$$

By use of the pulse size formula, P is introduced as an independent variable instead of one of the coordinates q_{F}. The number of protons in the region $q_{1}, q_{2}, \ldots q_{y}=1$, $q_{x+}, \ldots q_{n}$ and producing a pulse between P and $P+d P$ is obtained as:

$$
\begin{aligned}
& -6 \\
& N\left(q_{1}, q_{2}, \ldots q_{r-1}, P, q_{r+1}, \ldots q_{n}\right) d q_{1} d q_{2} \ldots d q_{r-1}\left|\frac{d q_{r}}{d p}\right|_{q_{1}, q_{2} \ldots} \| d p d q_{r * 1} \ldots d q_{n} \\
& \text { The differential sensitivity is then: }
\end{aligned}
$$

where If is the total nuber of proton recoils and the nol fold integration is to be extended over all values of the coordinatec compatible with the given pulte F. (It is, of course, very important which coordinate q_{r} is eliminated, since sone choices wild considerably simplify the work. The proper choice dopends ontirely on the individurl counter being considered and so no general rule can bo given.) Total sensitivity is again obtained from:

$$
S(P)=\int_{\text {max }} \text { D.S. }(P) d P
$$

Before applying the above let us define sone tomes:
a) Thin Paraffin o This means that the anorgy lost by recoil protons in traversing the paraffin is negligible.
b) Electron Collection only electrons are collected in the chember mad thia if done in a than duriter mitch the positive ions move but a negligible distanco.
0) Positive Ion Collection - Both electrons and positive ions are collected.
d) Parallel plate Counter = The ion chamber consists of 2 parallel plates kopt at different potentials with the paraffin flat against one plate。 Electrons are coldected at the opposite plate.
e) Cylindrical Counter - A collecting wixe along the axis of a cylindxieal chamber collects electrons produced by proton recoils from a parafiin disc supported against the side of the cylinder. A line perpendicular to the parafrin auro face through its center pasaes through tho collecting wire

III. Plane Parallel Counter, Thin Paraffin, Positive Ion Collection

This somewhat trivial case deserves consideration firat because it most clearly illustrates the general nethod, and second because it gives us a standard case with which all other counters can be compared. The acconpanying diagram illustrates the coorainate aystem that will be used for all plane parallel counters. Let $E_{0}=$ energy of incident neutrons

$a=$ chambar thickness
$t=$ paraffin thicknesa
x varies from 0 at the chamber edge to t at the top edge of the paraflitin
$c=$ capacity of the chamber
$R_{0}=$ range in paraffin of protons of onergy E_{0}
$R_{0}{ }^{\prime}=$ range in argon of protons of energy E_{0}

$f=\cos \theta$, where θ is the angla between the path of the recoil proton and the direction of the neutron beam.

The uppar plate of the cinmber is assumed at zero potential and the botton at $+\nabla$.
a) Dorivation of pulse formula

If an ion pair is produced a distance d from the bottom plate the work don on the electron in moving it to the collecting eleotrode is: eVd/a and that done on th positive ion is: eV($a-d) / a$, making the total work on the ion pair eV. As this is done at the expense of the energy of the chamber considered as a condenser we have:
or

$$
\Delta\left(\frac{1}{2} c v^{2}\right)=e V=c v \Delta v
$$

$$
\Delta v=e / c
$$

Now congider a proton originating at x and going off at an angle cos ${ }^{-1}$ jp. It is easily proved that its energy is $\mathrm{E}_{\mathrm{o}} \mu^{2}$. Since the paraffin is thin no energy if lost before it onters the chamber. If w is the average onergy necessary foproduce W. fon
one ion pair, the total number of ion pairs formed in the chanber is wie. Since each ion pair gives a pulse of $=\theta / C$, the total pulse due to the proton is:

$$
P=\frac{\theta_{W} E_{2}}{C}
$$

Where E_{2} is the energy with which the proton entered the chomber. Here it is assuned that tho proton is stapped in the argon. Yith $E_{2}=E_{0} \mathrm{~F}^{2}$ we have $\mathrm{D}=(0 \mathrm{w} / \mathrm{C}) \mathrm{E}_{0} \mu^{2}$. For simplicity in parallel plate comaters we will measure pulses in units of ew/C. Thus $p=E_{0} p^{2}$.
b) To obtain the number of recails in the region $q_{1}, q_{2} \ldots q_{n}$

The number of recoils in a volumo eloment of unit area and thickess dx is nv $\sigma_{H} d x$ where $\sigma_{H I}$ is the hydrogen soattering orose section per unit volime and ny is the incident noutron flum, From the fact that the number of recoils from the isotropic $n_{p} p$ acattering between E and $E+d E$ is $d E / E E_{0}$ which is dfe from tho above relation $E=$ Fio μ^{2}, one has the result that the number of recoils in the region x, μ is $n v \sigma_{H} 2 \mu d f t \pi$ 。 Using P instead of μ as an independent variable it follows that the number of recoils in region x, P is $n \nabla \sigma_{H} d \pi\left(d_{i} x^{2} / \partial P\right)_{\pi} d x$. But $\left(d \mu^{2} / \delta_{2}\right)_{\pi}=1 / E E_{0}$ Honce:

$$
D_{د} S_{0}(P)=\frac{n \nabla \sigma_{E}}{M G_{0}} \int_{0}^{t} d x
$$

(Here x oan be iniegratad over the whole range from 0 to t, since all valuoa axe compatible with a given P.)
$m=\left(\right.$ total number of rocoila with all values of x) $=n v \sigma_{i l} t$

$$
\begin{gathered}
\therefore D_{0} S=2 / E_{0} \\
S=\int_{P}^{P_{\text {max }}} D . S .(P) d P=\left(E_{0}-P\right) / P
\end{gathered}
$$

IV. Plane Paraliel Counter, Thick Paraffin, Positive Ion Coljection

In Section III it mas found that if positive ion collection is used the pulse due to a particle ontering the ion chomber with energy E2 is (in our unit):

$$
P=E_{2}
$$

Lot us exprose Eq in torms of x and μ 。

Chamber

In paraffin the rangeonergy relation assumed is:

$$
R=\alpha E^{3 / 2} ; \quad R_{0}=\alpha E_{0} 3 / 2
$$

Denoting the recoil enorgy by $E_{1}\left(E_{1}=E_{0} \mu^{2}\right)$ we got:

$$
R=\alpha E_{1} 3 / 2 ; R o r=\alpha E_{2}^{3 / 2} ; r=\alpha\left(E_{2} 3 / 2 \circ E_{2}^{3 / 2}\right)
$$

Thon

$$
r=x / \mu=\alpha\left(E_{0}^{3 / 2} \mu^{3}=E_{2^{3}}^{3 / 2}\right)
$$

The number of recoils in the region x, μ is $n \sigma_{y} d x d j^{2}$. Instoad of x we now introduce P as a coordinate。 The number of recojis in region P, μ is:

$$
\left|\left(d x / \partial E_{2}\right)_{\mu+}\right|-\frac{3}{2} \alpha \mu \mathrm{E}_{2}^{2} \frac{1}{2}
$$

Eut since $P=E_{2}, f(\partial x / \partial P)_{\mu} \left\lvert\,=\frac{3}{2}\right.$ a $\mu P^{\frac{i}{2}}$ and thus the number of recoils in region $\mu_{0} P$ is $\frac{3}{2} n \nabla \sigma_{\mu} \alpha \mu p^{\frac{1}{2}} d P d \mu^{2}$. Hence

$$
\text { D.S. }=\frac{3}{2} \frac{n v v_{N}}{\mu} \int_{\mu_{1}}^{\mu_{2}} H^{\frac{1}{2}} d_{\mu}^{2}
$$

where $\mu=$ (total number of recoils with all E_{2} and μ) (number with all x and y) $=n \nabla \sigma_{H} t, \mu_{2}=$ minimun μ that will yield the given pulse. It is obviously the po

Similarly $\mu_{2}=$ maximum μ that yiolds the given pulse. Eithor it is tho μ at $x=t$ that oanses the given P or, if such fould be greater than $1, \mu_{2}$ should be takon asil. Expressing this mathematically wo hav: μ_{2} is the smaller of 1 and the solution of the $^{3}-t / R_{0} \mu_{2}=\left(D / E_{Q}\right)^{3 / 2}=0$. Using these facts one finds:

$$
\text { D.S. }(P)=\left(R_{0} / E_{0} t\right)\left(P / E_{0}\right)^{2 / 2}\left[\mu_{2}^{3}-\left(P / E_{0}\right)^{3 / 2}\right]
$$

Eere fo occurs as an awhard parameter. It complicates matters by preventing us frcil obtaining an anelytic expression for $S(P)$. However, this is no groat loss in any individual case, since having $D . S_{n}(P)$ vB P oither graphically or as a table of values, one can find $S(P)$ by numerical integration. Graphs of $D_{0} S .(P)$ and $S(P)$ for soverad walues of R_{0} / t are given in Figs. 2 and 3 . It is seen that thick paraffin tonds to cu down the counters' response to the majler pulses. This merely says that ane of the Jom anergy recoils are absorbed in the paraffin and never roach the ion ohanber. The mall affect of thick paraffin on D.S. (P) for large P allows us to make the following approxination for mors complicated countere (if $\mathrm{R}_{\mathrm{o}} / \mathrm{t}$ is large). For low-energy pulcas we assume thick paraffin, but ignore other offecte, such as olectron collection and wall effeots which aro kimportant at thoso onorgies. High onergy pulses are thon cals culated taking into account the ignored effects but asbuming thin paraffin. of ourse if R_{0} / t is not lerge this assumption is bad as Fig. 2 show, aince the high onorgy response is also cut down. Prevention by the parafifin of any but those protons atarting quite noar the paraffin surfece from producing the maximum pulse causes this orict.

 Electron collection forces us to use a different pulse size formula. Now che pulse caused by the formation of a single ion pair a distance d from the posir tive electrode ie only that due to the electron (i。e., $\Delta V=e d / C a$ instaed of σ / C). Consider a proton of energy E_{2} ontering the chamber at an angle $\cos ^{-1} \mu$ with the normal. If λ measures the distance along the path the number of ion pairs formed in $d \lambda$ is: owy $(d E / d \lambda) d \lambda_{0}$ Now $\dot{a}=a=\lambda \mu$. Thus $P=-(\sigma w / C Q) \int_{0}^{R_{2}}\left(d_{i} / \alpha \lambda\right)(a-\lambda \mu) d \lambda$ where the range in argon is $R=\alpha^{\prime} E^{3 / 2}$ and $R_{2}=\alpha^{\prime} E_{2}{ }^{3 / 2}$. After exprossing λ in terms of \mathbb{E} and again setting ew $/ \mathrm{C}=2$, integration yields;

$$
P=E_{2}\left(1-\frac{3}{5} \frac{R_{2}}{2} \mu\right)
$$

For thin parafin the energy of a recoil entering the chanber at μ is $E_{0} \mu^{2}$. Hence $P=E_{0} \mu^{2}\left(1-\frac{3}{5} \frac{R_{0}^{\prime}}{a} \mu^{4}\right)$. The fraction of racoils in region μ is $d \mu^{2}$. Introduce ing P instead of as a variablo gives:

$$
\text { D.S. }(P)=\frac{\partial \mu^{2}}{\partial P}=\frac{l}{\partial P / \partial \alpha^{2}}=\frac{1}{E_{0}\left(1-(9 / 5)\left(R_{0}^{2} / a\right) \mu^{4}\right)}
$$

where μ is obtained from the pulse sise formula. Agsin the result is expressed in terms of a paremeter. Hence $S(P)$ must be found by numerical integration. Figs. 4 and 5 shaw a typical example。 Electron collection has the effect of pushing the maximum pulse dawn somewhat and causing a poaking of the differential sensitivity in the reo gion of large pulsea.

The formulas for this case are particularly useful in conjunction wit' those of Section IV, sinco to a certain approximation a plane parallel counter with thiok parafin and electron collection can be treated by usiag Section IV formulan for amall pulses and this section² foraula for large pulses

Whsn designing fest neutron counters (say oftre ofder of 5 Mev) these formulas can be of considerable aid. For such energies the main worry is the paking offect caused by electron collection. To obtain quick estimates of the differential sensitivity curves and how they depond on chamber depth and argon pressure, one can ignore the paraffin thickness and use the last expression above for D.S.(P). Fig. 6 shows how the differential sensitivity curves vary with $R_{o}^{:} / a$.

On examining the formula it appears that oven for some R_{0}^{\prime} / a less than I a negative differential sensitivity will appoar. If this heppenod for $\mathrm{R}_{\mathrm{o}}^{2} / \mathrm{a}>1$, it would not be surprising since protons would not spend all their enargy in the chamber and so some correction would be expected. The present situation must be explained differently The answer lies in the vanishing of $8 P / \partial \mu^{2}$ because of the competition between the low energios of wide-angle recoile and the shorter electron pathe from forward recoils. P as a function of μ^{2} looks roughly like the accomanying diagram. Thus some pulses can be obused by two different $\mu^{\prime \prime s}$. The romedy is to break μ into two ranger $0 \leqq \mu_{1} \leqq \mu_{c} ; \mu_{C} \leqq \mu_{2} \leqq 1$ with $\mu_{2}=\left(\frac{5}{9} \frac{a}{x_{0}^{2}}\right)^{\frac{1}{2}}$ 。 (If μ_{c} turns out greater than 1 this phenomenon does not take place.) Then:

$$
\begin{aligned}
& D_{s} S_{0}(P)=\left|\frac{\partial \mu_{Q}{ }^{2}}{\partial P}\right|+\left|\frac{\partial \mu_{a}^{2}}{\partial P}\right| \\
&\left|\frac{\partial \mu_{a}^{2}}{\partial P}\right|=\left|\frac{2}{E_{0}\left(1-(9 / 5)\left(R_{0}^{3} / a\right) \mu_{k}^{4}\right.}\right|
\end{aligned}
$$

with μ_{k} the solution of

$$
P=E_{0} \mu_{k}^{2}\left(i=\frac{3}{5} \frac{R_{n}^{2}}{2} \mu_{k} 4\right)
$$

Here k is either u or l. The additional restriction is that re must be the solue tion of the pulse equation less than μ_{c} and μ_{u} must bs greater than μ_{c}. If for a give $F \mu_{u}$ comes out greater than one, the expression $\left|\frac{\partial \mu_{0}^{2}}{\partial P_{0}}\right|$ shougd be taken as. zerop;

VI. Plane Parallel, Thick Paraffin, Electron Collection

This is the type of plane parallel counter actualiy used in the laboratory. As coordinates we take μ and the energy (E_{2}) with which the proton onters the chamber.

In Section V it was shown that: $\beta=E_{2}\left[1-\frac{3}{5} \frac{R_{0}^{3}}{a}\left(\frac{E_{2}}{E_{0}}\right)^{3 / 2} \mu\right]$. The formula $x=\operatorname{a\mu }\left[E_{0} 3 / 2 \mu^{3}-E_{2}{ }^{3 / 2}\right]$ was found in Seotion IV. Since the number of recoils in the region x, μ is $n \sigma_{\text {值 }} d x d \mu^{2}$ the number in the region E2o μ is equal to $n \sigma_{H}\left|\left(d x / \partial E_{2}\right)_{\mu}\right| d \mu^{2} d E_{2}$. Using the relation batween x and E2, the number in the region E_{2}, μ becomes $\frac{3}{2} \operatorname{nv} \sigma_{H} \mu \alpha E_{2}^{\frac{1}{2}} \mathrm{dE}_{2} \mathrm{~d}_{\mu}{ }^{2}$. Introducing P as a variable instead of E_{2} yiolds:

$$
\begin{aligned}
D . S .(P) & =\frac{1}{M} \int_{\mu}^{\mu} 3 n \nabla \sigma_{B} \alpha_{\mu} \mu^{2} E_{L^{\frac{1}{2}}}\left|\left(\partial E_{2} / \partial P\right)_{\mu}\right| d_{\mu} \\
& =\frac{3 R_{0}}{t E_{0} 3 / 2} \int_{\mu}^{\mu_{2}} \frac{\mu^{2} E_{2}^{\frac{1}{2}} d \mu}{1-(3 / 2)\left(R_{0}^{1} / a\right) \mu\left(E_{2} / E_{0}\right)^{3 / 2}}
\end{aligned}
$$

since $M=n v \sigma_{H} t H_{1}$ is the value of μ at $x=0$ that will produce the given pulae and so is given by: $P=E_{0}\left(\mu_{y}^{2}-\frac{3}{5} \frac{R_{0}^{8}}{a} \mu_{1}^{6}\right)$, Sirailarly μ_{2} is the value of μ at $x=t$ that will yiold P. To find it let us consider the equations it must satiefy: for ony
 Since it must produce the given pulse it must also fulfill:

$$
P=E_{2}\left[1-\frac{3}{5} \frac{R_{0}^{o}}{a}\left(\frac{E_{2}}{E_{0}}\right)^{3 / 2} \mu_{2}\right]
$$

From these equatioas it is possibles given P_{0} to find μ_{2}. If, however, this yields $\mu_{2}>1$, the valus 1 should bo used. Unfortunately the expression for the differential sensitivity cannot be integrated directly and so numerical means must be used. The curve for one such counter hes been calculated for Rosai. It is shown in fig. 7. When integrated it yields the total sensitivity curve of Rigr gosera to, Ghoted
that the two effects of thick peraffin and electron collection combine as expected. Thick parafiin cuts dom the number of smat pulses wile electron collection lowers the maximumpulas and causes a peaking of the large pulses.

For this type conater a range energy ralation in the paraffin of the type $R=a E^{3 / 2}+\beta E$ has also been used. The formulas that result after a calculation very similar to the above are:

$$
\text { D. } S_{0}(P)=\frac{3}{t} \int_{\mu_{2}}^{\mu_{2}} \frac{\mu^{2}\left(\alpha \sum_{2}^{\frac{1}{3}}+(2 / 3) \beta\right)}{1-(3 / 2)\left(R_{0}^{1} / a\right)+2\left(E_{2} / E_{0}\right) 3 / 2} d_{\mu}
$$

Where E_{2} is given by: $P=E_{2}\left[\mathbb{I}-(3 / 5)\left(R_{0}^{9} / a\right) \mu\left(E_{2} / E_{0}\right)^{3 / 2}\right] \mu_{1}$ is the solution of: $P=E_{0}\left(\mu_{1}^{2}-(3 / 5)\left(R_{0}^{9} f a\right) \mu_{d}^{6}\right)$ and μ_{2} is the smallor of 1 and the solution of the paix of equations:

$$
\begin{aligned}
& t=\mu_{2} \alpha\left[E_{0}^{3 / 2} \mu_{2}^{3}-E_{2}^{3 / 2}\right]+\beta_{\mu}\left[E_{0} \mu_{2}^{2}-E_{2}\right] \\
& E=E_{2}\left[1 \infty(3 / 5)\left(R_{0}^{p} / a_{2}\right) \mu_{2}\left(E_{2} / E_{0}\right)^{3 / 2}\right]
\end{aligned}
$$

Figs. 9 and 10 shom the differential and infogral sensitivity curves obtained in a perticular case for Staub using these formulas. The principal offect of the addition of the βe term is to keop the differential sensitivity finito at p oqual to zero.
FVGURE
CONOLTLONS. \square

\square

CONDITIONS.
PROTON RANGELMARGON = O335CA \qquad PROTON RANGE WN GIYC ROL

TAKENAS: RYGE?
\qquad

