

IA (TA

April 27, 1944
This documont contains 32 pages

INVESTIGATION OF PROPORTIONAL COUNTERS

FYORK DONE BY:
REPORT WRITTEN BY:
B. O. Diven
B. C. Diven
N. G. Nerason
B. Rossi
B. Rosai

ABSTRACT

Exporimonts on proportional counters with various gas fillings heve been carriod out with tho purpose of detarmining the gas multiplication as a function of voltage and pressure, and of investigating the uniformity of pulae hoight for a givan primary ionization. It was found that counters oan be made to operate satisfactorily with gas multipliagtions up to sevoral fundred. Tho pulso hoight is indopondent of the distance from the wire at which the primary ioniaation takes place. No evidence was found for any aproad in pulse height being introduoed by gas multiplication. The ges multiplication docreases naar the end of the wire because of the perturbation of the electric field by the supports at the wire. The normal value for the gas maltiplication is only reached at a distance of the order of 10 times the diamoter of the support.

APPROVED FOR PUBLIC RELEASE

INVESTIGATION OF PROPORTIONAL COUNTERS

A. study of proportional counters with cylindrical geometry has be日n carried out for the purpose of investigating:
A. Gas maltiplication as a function of voltage and pressure.
B. Spread in pulso heights.
C. Pulae height as a function of distance of the ion track from the contral wiro.
D. Find effects.

The counters investigated inolude:

1. Counters filled with a hydrogen containing gas for use as hydrogen recoil noutron detectors.
2. Boron tripluoride counters for use as (n, ∞) neutron detoctors.
3. Counters with "insctive" gas fillings.

Soma data regarding gas multipliation is avajlable in the literaturo $1,2,3$) but does not provide information on all the geses and pressures which are of interest.
'Che questions under B sand C have boon inveatigatod previously by Brubaker and Pollard ${ }^{4}$). Their monaurements indioato a large variation

1) M. E. Roso and S. A. Korfif, Phys. Rev. 59. 850 (2941
2) W. E. Ramsey and M. E. Rose, Phys. Rev. 61, 198 and 504, (1942)
3) S. A. Horff, Rev. Mod. Phys. 14, 1, (1942)
4) G. Brabaker and Pollard, Rav. Sci. Instr. 8, 255, (1937)
of pulso height with distance from the wire and a large spread in pulse heights. The present investigation does not confirm the existence of sither of these affects.

No information on end effects is found in the literature.

The counters sased in the presont investigetion are represontad by tho diagrams in Figg. 1 and 2. In both counters a collimated baam of poloniur alphas could be shot into the active rolume through mica windows. In order to minimize tho effects of straggling, the window thicknesses and pressures of the gas fillinge were so chosen that the alphas completely traversed the counter. The pulses from the counter were araplified by an RC couplod Iinear amplifier in which the shprtast timo constant was one mundred microseconds. An electronic discriminator was used to determine the pulse height distributions.

A. Gas Multiplication

The gas multiplioation is defined as the ratio of the total number of ions collected by the wire to the number of ion pairs produced by the ionizing particlo. For a given gas, the gas wultiplication M will bo a funation of the diometer of the wire, a_{y} the diameter of the oylinder, b. the voltage across the countor, V, and the pressure, p. The nature of the oylindor may also influance the gas multiplioation if the photoo electric effect on tho wall plays any important; role. If this is not the oase, all the phonomena which are significant ior the gas miltiplication take place within a small distance from tho central wire (up to a fow times the wire radius). Hence M will not chango if ∇ and b are changed in
suoh a way as not to alter the field near the wire. 11 will also remain unchanged if a and b are multiplied by a common factor k, p is divided by the same factor and V kept oonstant. In fact, by so doing all Linoar dimensions, including tho mean froe paths, aro changed by the same factor k and the eleotric fialds at oorrosponding points are also ohanged by tho same factor. It follows that 4 can be oxpressed as a function of $v / \log (b / a)$ and of pa:

$$
M=u\left[\nabla / \log (b / a)_{y} p a\right]
$$

Hence it is sufficient to investigate the dependence of in on only two variables, for which we have chosen V and p.

Experimentaily, the ges multiplication was measured in the following way. Alpha partioles from a polonium source were shot gerosa the counter and the pulse height at the output of the amplifier was recorded. Then the voltage aeross the counter was reduced until the counter was operating as an ionization chamber without gas multiplioation and the gain of the amplifier inorossed until the output pulses had again the aare amplitude. The required increase of the gain of the amplifier was taken as a masure of the gas maltiplication.

This prooedure is not entirely accurate sinco, when the countar is operated as an ionization ohambor, only that part of the pulsos is recorded which is due to the motion of the electrons. Eowever, tho error is small because most of the voltage drop takes place in the neighborhood of the positive central wire.

For low stopping powers, the pulse height was too small to measuro without gas multiplication. In thase cases tho pulse hajght was computed from the valus observad at a higher pressure by assuming that without gas multiplication the pulse hoight is proportional to pressure. Thia in not quite corract beoause of the variation of spocific ionization with enorgy for alpha particles. It may be pointed out that neither of the sources of error mantioned will affect the relative values of the gas multiplication, but will only affect, in a small degree, tho absolute value of this quantity.

The graphs in Figs. 3 to 12 give gas multiplication as a function of voltage for constant pressure and voltage as a function of pressure for constant gas multiplication for the following gases: hydrogen, methane, 90 per cent hydrogen plus 10 por cent methane, argon, 98 per cent argon plus 2 per cent CO_{2}. The data were taken with tho oounter in Fig. 2 ($a=.010^{\prime \prime}, b=7 / 8^{\prime \prime}$). The bean of alphas is paseed through the counter perpendioularly to the wire at a distance of $I / A^{\prime \prime}$ from the wire.

The graph in Fig. 13 givos gas multiplioation as a funotion of voltage for 10 cm of boron trifluoride. These measurements wera taken with the counter in Fig. $1\left(a=.010^{4}, b=21 / 2^{4}\right)$ in which the alphas wore ahot parallel to the wire. In thia case, for tha absolute evaluation of the gas multiplication, one must consider that when the counter is usad as an ionization chamber, the collecting eleotrode includes the supports of the wire. In all oasee, except for vory low pressures, the limiting factor on tho anount of gas multiplioation observable was saturation of tho pres amplifier.

From an oxamination of the graphs one can draw the following conclusions:

1) In all cases except for lov pressures of hydrogen and argon, the gas multiplication in the region 20 to 500 is an approxia mately exponential function of voltage.
2) At high pressures (above 25 cm) all of the gases invastigated are suitable for proportional countors. That is, the gas mulifiplication does not inorease too rapidly with voltage. The change in voltage correaponding to a change of a factor two in gas multiplication is of the order of 100 volta.

For low pressures of hydrogen and argon the increase of gas amplification with voltage is so rapid that the countors ars difficult to use. The addition of a amsll amount of methane to hydrogen or of carbon dioxide to argon improves the operation of the counters very considerably.

In all the measurements discussed above, the counters were filled with gases directly from the tank with no purification. The rated puritios are: Argon - 99.6 percent, hydrogen - unknow, mothane - 85 percent, borontrifluoride o 97 percent. The gas amplifioation vs, voltage was measured also with a oountor which was outgassed for 12 hours at 170° centigrade and filled with 22 om of carefully purified hydrogen. Tho results do not differ appreciably from those obtained with ordinary tank hydrogen at the same pressuro.

No data wers taken with vory pure argon during the prosent
investigations. Eowever, proportional aountars have been operated in this laboratory with highly purifiad argon at 35 cm prassure (R. W. Thampson) and the gas multiplication was found to incrase with voltage more rapidly than in the case of counters with non purified argon.

B. Spread in Pulse Height

If one plots counting rate as a function of bias setting one obtains curtes of the type represented in Figs. 14 and 17. We shall masare the average pulse haight by the value of the bias voltage at whioh the counting rate is roduced to one half of the value on the plateau. The spread will be measured by $\Delta V / V_{0}$ where ΔV is the diffarence between the bias voltage at which the counting rato ia reduced to 75 percent and 25 parcent respectivaly.

No relation has been ostablished between the spread and aither the emount of gas multiplication or the pressure. We believe that the observed spreads are mainly due to lack of monochromatioity of the source, to geometrical factors auch as inoqualitios of path length of the alphaa in the counter and to straggling of ionization. This belief is strengthened by the fact, that other conditions being the same, about the same aproad is obtained both with and without gas multiplioation. The smallest spreads were obtained by placing a very thin and clean polonium source inside the counter (Fig. 1, position c) so that no vindows were traversed, and the alphas wero far from the end of their range. The spread $\Delta V / V_{0}$ observed Varied from 5 per cont to 12 per cont with difforent fillings. The maximum
differonoe in path lengths of the alphas in tho counter amounted to 6.5 per cent. It should be noted that when alphas were introduced into the counter through windows, the spread was generally larger. Particularly largo apreads were obtained with old windows that had probably beoome dirty.

The above results on spread of pulse height were obtained with CH_{4} and E_{2} plus CH_{4} fillinga, and pressures ranging from 10 to 40 cm . No definite assurance can be given at the present time that these results are valid also for other gases and pressures.

C. Variation of Pulse Height as a function of Distance from the Hire

Since the gas multiplication takos place within a very amall distance from the wire, one should not expect any variation of pulse height wifh distance of the ion track from the wire unless eleotron oapture takes place. This effect, which is a priori not unlikely because of the woakness of the field near the oylinder, would tend to make the pulse height a deoreasing fupotion of distance from the wire.

Mersurements on variation of pulse height with position were carried out with the counter in Fig. 1. The end plate (B) carries a number of holos arranged along a radius, which are oovered with a thin miaa window. Through these holes a well collimated beam of alpha particlos can be shot parallel to the wire and at different distances from it. Great cere must be taken to insure uniformity of the window since a variation of the thickness can easily cause a difference between bias curves observed at various positions of the source. Actually several
different windows were usod 2.5 a chack upon this source of error. We ohell define the "odge to center" ratio as the ratio between the avorago pulse beight produced by alphas possing near the cylinder to the avarage pulse hoight produced by alphas peasing near the wire.

Some of the results on odge to center ratio obtained with wire supports show in Fig. 1 are given in Table I.

Table I

Gas	Pressure (om)	Gas Multiplication	Edge to Center Ratio
Purified H_{2}	22	512	.81
Tank	H_{2}	22	500
$\$ 0 \% \mathrm{H}_{2}$ plus $10 \% \mathrm{CH}_{4}$	22	600	.84
Kathane	11	380	.80
			.83

No dependence of odge to center ratio on gas filling is indie cated by the above figures. Other axperiments failed to detect any dependence on the magnitude of gas multiplication. Hence it was felt that the effecto observed might be du to the distortion of the electric field by the supports of the wire. When the supports are considerably thioker than the wire, as in the measurements under considoration, the bonding of the lines of force causes a smaller length to be collectod from an ion track noar the cylinder than near the wire (see Fig. 15). Acoorjingly the wire supports ware changed as indicated in Fig. 36. With this arrangement the aetive length of the wire was limited by two tubos .025" in dismeter, i.e. only $21 / 2$ times larger in diameter than tho wire itself.

Pig. 15

Fig. 16

Typical bias curres obtained near the wire and near the cylinder with the new wire supports are shown in Fig. 17. The odge to center ratios for rarious gasos are given in Table II.

Tablo II

Gas	Prossure (cm)	GaB Naltiplication	Edgo to Conter Ratio
H_{2}	22	250	1.02
CH_{4}	22	57	1.02
BF_{3}	10	80	1.00

These ratios may all be taken as unity within the accuracy of the experiment.

In conclusion, no effeots of electron capture on the operation of tho proportional counter were deteoted for the pressures and gases used.

D. End Effects

It is customary to limit the effeotive volume of a counter by terminating the wire with a tubo or a rod of a larger diameter. Suon an arrangement, howevor, as show by the results in the proceding section produces a parturbation of the fiela which may offect the pas multiplication in the rbighborhood of the support. This effect has boon investigated with the counter in Fig. 2. A collimatod boora of alphas wes passed through the counter perpendiculurly to the wire at a distance of If in from the axia of the counter. The . $010^{\prime \prime}$ wire was terminated with tubes made from hypodermic needies $.040^{\prime \prime}$ and $.025^{\prime \prime}$ in diametor. Bias ourves were taken with the mipha boam crossing the countor at different distances from the crossosectional plane which aontains the end of tho supporiong tubo. The averago pulso hoight inoroases rapidly with distance from this plano and reaches 75 per cent of the maximum value at 6 man with tho $.025^{\prime \prime}$ tube and 8 mm with the 0 os 0^{\prime} tubo.

Some of tho bias curves obtainad for different positions of the boam of alphas aro presentod in Fig. 18. The c.verage pulse hoight is plotted againat distance from the end of the wire in Fig. 19. The large spread in pulse hoight for small values of thie distanoe is accounted for by tho finite width of the beam of alpha particies (approx. 1 man at the center wire) and by the very rapid variation of gas multiplication along the wire.

It may be noted that a small amount of gas multiplication takes place at the . O25" tube if the multiplication at the wire is sufficiently high. With gas maltiplication of 256 at tho wire, the gas multiplioation at the tube is 10.

Tha reduction of gas multiplication naar the end of the mire is woet ilhely accounted for by a decrease in field atrength due to the support.

The end offecta describod above introduce an uncertainty in the counting volums of a countor. These affeots are not negligible for practical counter lengtha, and cannot bo decreased by decreasing the dias meter of the support because gas amplification at the support becomes important if its diameter is less than 2.5 times tho wire diamoter.

Fig. 1. Test Proportional Counter

The high-roltage electrode (a) is a brass cylinder $11 / 2^{\prime \prime}$ in diamator. Glass kovar seals are used as outlets for the high voltage electrodo and for the central wire. The vacuum seals are made with fuse wire gaskets. 14 holes, 2 mm apart are drilled along a radius of the end plate (b): The holes are covered with a thin mica window $\left(0,007 \mathrm{~g} / \mathrm{am}^{2}\right.$) sealed with glyptal. A Po source carried by the plug (c) can be placed inside the case so that alpha particles oan be shot acoss the counter through the hole (d) in the high voltage oylinder.

Fig. 2, Test Proportional Gaunter

The high-roltage olectrode is formed by a braes block with a cylindrical hole $7 / 8^{\prime \prime}$ in diamater. The outlete for the central wire are kovar glass seale. The kovar cylindors (a) (a) are grounded and sorve as guard rings. Alpha particles from a well collimatod fo source can be shot, across the counter porpendicularly to the axis and at distance of $1 / 4^{14}$ from it, through series of holes (b). These are covared by a thin miea windoy sealed with glyptal. The joints are soldered with pure tin so that the oounter can be backed at about $200^{\circ} \mathrm{C}$.
 "4 4 4

嘘
(19)踉

$+$$\square$ T $+1$
THuw Combly

0

Cl|

APPROVED FOR PUBLIC RELEASE

10128

UNCLASSIFIED

UNCLASSIFIED

