RADIOACTIVE-WASTE DISPOSAL IN THE OCEAN

Handbook 58

U. S. Department of Commerce National Bureau of Standards

U. S. Department of Commerce, Sinclair Weeks, Secretary National Bureau of Standards, A. V. Astin, Director

Radioactive-Waste Disposal

in the Ocean

Recommendations of the National Committee on Radiation Protection

National Bureau of Standards Handbook 58 Issued August 25, 1954

For sale by the Superintendent of Documents, Washington 25, D. C. - Price 20 cents

Contents

Page

Pref	ace
1.	Introduction and summary of recommendations 1
	1.1. Introduction
	1.1. Introduction 1 1.2. Summary of recommendations 2
	a. Site2
	b. Transportation 2
	e. Regulations
	c. Regulations d. Methods of disposal—packaged3
	e Methods of disposal—bulk
	f Methods of disposal—pipeline
	g. Records
2	General considerations 4
۰.	2.1. Public relations aspect
	2.2. Finality of disposal
	2.3. Accidental hazards
	2.4. Rate of disposal
	2.5. General responsibilities
3.	Characteristics of the ocean.
υ.	3.1. Volume of ocean waters
	3.2. Relief of the ocean basins
	3.3. Chemical composition of sea water
	3.4. Physical properties of sea water 10
	3.5. Currents and mixing
	3.6. Biology of the oceans.
	3.7. Marine sediments
	3.8. Pollution
A	Fate of radioactive materials introduced into the ocean
т.	4.1. Factors favoring dilution or dispersal
	4.2. Direct hazards
	4.3. Indirect hazards
5	Considerations for selection of a disposal method 19
6.	Means of disposal
0.	6.1. Packaged disposal 22
	6.2. Bulk disposal at sea
	6.3. Pipeline disposal
7	Designation or selection of sites of disposal
8.	Recommended containers for packaged disposal in the ocean.
0,	8.1. General characteristics
	8.2. Materials of construction 20
	8.3. Design of package 2t
	8.4. Specific gravity of package 27
9	8.5. Identification 27 Recommendations for the transportation of radioactive ma-
0.	terials 27
10	terials27 General responsibilities and problems for consideration28
11	References30
тт.	Melefelices

Radioactive-Waste Disposal in the Ocean

1. Introduction and Summary of

Recommendations

1.1. Introduction

The ever-increasing production and use of radioactive isotopes has raised numerous questions concerning their handling, transportation, and ultimate disposal. It appears that the sea may be an appropriate place for the disposal of intermediate and large amounts of isotopes having long half-lives (more than 1 year) or high radiotoxicity. It is the purpose of this Handbook to outline some of the factors that must be considered in the disposal in the ocean of unwanted radioactive wastes.

Two factors will generally be involved in any decision as to the method of disposal employed-safety and convenience. In many instances where the quantities are small or the halflives relatively short, unwanted isotopes or contaminated equipment and materials may be safely disposed of by storage, flushing into the sewage or drain systems, incineration, or by burial on land.12 The choice between sea disposal and other methods will in part be determined by the quantity of the radioactive material, its half-life, and its type; but in many instances the selection may be based upon convenjence and economics. It seems very reasonable to assume that producers or users of radioactive isotopes located on or

¹Some phases of these various methods are discussed in previous reports of this Committee. See National Bureau of Standards Handbook 42, Safe han-dling of radioactive isotopes; NBS Handbook 48, Control and removal of radioactive contamination in laboratories; NBS Handbook 49, Recommenda-tions for waste disposal of phosphorus-32 and iodine-131 for medical users; and NBS Handbook 53, Recommendations for the disposal of carbon-14 wastes. ² This is not to imply that disposal by burial in soil should be limited to small quantities and short half-lives. Land storage of solids by direct burial or in vaults, and of residues from liquid wastes in underground tanks, may be safe in specific areas. There will be a report on this subject by the National Committee on Radiation Protection in the near future.

near the coasts, or on inland waterways, may find it simpler to dispose of virtually all wastes at sea; whereas agencies that are isolated from the ocean or have only small amounts of wastes may prefer to use land burial or other methods of disposal.

This Handbook presents recommendations concerning the sea disposal of radioactive wastes that have been enclosed in massive containers. Formulation of these recommendations required a careful consideration of both immediate and long-term effects that could result from the introduction of radioactive materials into the ocean. These effects could only be estimated from an understanding of some of the basic characteristics of the oceans. The following material, upon which the recommendations for packaged waste disposal are based, is therefore necessary for an understanding of the acceptable procedures and will be helpful in dealing with specific waste-disposal problems and in evaluating other proposed methods of disposal. The problems raised are in many ways unique, and they brought to light the lack of knowledge that exists concerning many of the factors that will be involved in the ultimate distribution and fate of radioactive isotopes dumped in the ocean. Much research on the basic factors, as well as engineering investigations of specific methods of disposal, remains to be done to provide the proper guidance in this problem that is of ever-increasing local, national, and international concern.

1.2. Summary of Recommendations

a. Site

Disposal of all packaged wastes shall be in regions where water depths exceed 1,000 fathoms. The disposal of bulk wastes shall also be confined to regions where water depths exceed 1,000 fathoms, except for small quantities of liquid waste or as experimental studies indicate conditions under which disposal of liquid wastes may be safely conducted in other areas. Within these limitations, designation of specific sites does not appear necessary at the present time.

b. Transportation

All personnel handling or transporting radioactive wastes should follow recommendations given in National Bureau of Standards Handbook 42 to hold exposure to a minimum. The whole-body exposure to gamma radiation shall not ex-

 $\mathbf{2}$

ceed 300 mr/week measured in air, and exposure of the hands shall not exceed 1,500 mr/week measured in the skin.

Although recommendations cannot be made about the type of vessel to be used for sea disposal, present experience indicates that a hopper-type vessel, such as a garbage scow, may be the most suitable.

c. Regulations

There exists no authority at the present time for the control of dumping of radioactive wastes on the high seas. Packaging and handling of radioactive materials for transportation shall conform to regulations of the U. S. Interstate Commerce Commission and of the U. S. Coast Guard, wherever applicable. Regulations of the U. S. Atomic Energy Commission, the U. S. Interstate Commerce Commission, and the U. S. Coast Guard require specification labeling of packages containing radioactive materials.

d. Methods of Disposal-Packaged

Disposal of all packaged wastes shall be in regions where water depths exceed 1,000 fathoms. Containers for packaged disposal shall be designed, constructed, and filled in such a way as to insure that the package:

(a) cannot be easily damaged or broken, and will reach the bottom without appreciable loss of contents;

(b) is free of voids;

(c) has a minimum average density of 1.2 g/cm^3 , or 10 lb/gal;

(d) has sufficient shielding for safe storage, shipment, and handling, and

(e) is of a size and shape to be handled quickly and conveniently.

It is recommended that packages have an identification semipermanently impressed in a concrete or metal surface; including the name of the organization preparing the package, the date, and (for use in case of accident) indication of the most hazardous radioisotope involved and of the level of activity contained.

e. Methods of Disposal-Bulk

Bulk disposal includes all operations in which radioactive wastes are discharged directly into the sea in unpackaged form. It is preferable that the material be in such a form that it will sink when discharged. For example, the material could be prepared in the form of insoluble beads, pellets, or briquettes; or it may form a precipitate of high density. Liquid materials should have a density greater than 1.1 g/cm^2 to facilitate mixing. Greasy or oily materials that would float or coagulate and form a scum are unsuitable for bulk disposal.

Except for small quantities or experimental operations, bulk disposal shall be confined to areas in which the depth is 1,000 fathoms or greater.

f. Methods of Disposal-Pipeline

The disposal of radioactive wastes through pipelines is considered undesirable.

g. Records

Adequate records of dumping operations shall be kept. Such information, listing amounts and types of different radioisotopes, methods of disposal, localities, and dates, shall be available to the U. S. Coast Guard or to other cognizant agencies upon request.

2. General Considerations

In formulating the principles involved in radioactivewaste disposal, one immediately encounters items that cannot be evaluated numerically. Statements of maximum clarity concerning these intangibles are essential if the proposals to be made are to be understandable. Before describing the factors that affect methods of sea disposal, it is necessary to explain briefly some of the basic premises that are involved.

2.1. Public Relations Aspect

Any recommendations concerning the disposal of radioactive wastes in the ocean shall not only provide adequate safety but also be such that they will minimize (or if possible, eliminate) the possibilities of undue public alarm. Unfavorable situations might arise if a package of radioactive material were found on the shore or recovered in a fisherman's net or by a trawler or dragger. In addition to such material evidence of poor practices, there is every reason to anticipate that any decline in the sportsmen's catch, or in a commercial fishery, might be attributed to the dumping of radioactive wastes. Unsound rumors that ma-

4

rine food products contain sufficient quantities of radioisotopes to be detrimental to health should be countered rapidly and effectively. Last but not least, it is possible that waste-disposal practices may be responsible for international incidents leading to formal protests being lodged between nations. Advance publicity might help avoid unfavorable public reactions, and it is obvious that any recommendations should be entirely justifiable in the light of existing knowledge.

2.2. Finality of Disposal

It is of the utmost importance to remember that radioactive isotopes introduced into the ocean in ways considered desirable for waste disposal can never be removed or recovered. This point is stressed because it represents a major distinction from land burial. Because any land burial site can be either intentionally or accidentally reopened, the material is capable of recovery. There are already cases on record where for one reason or another land disposal sites have had to be shifted. In the case of sea disposal, as discussed here, the act is final. There are two aspects of this situation that should be recognized : first, sea disposal should be used only for materials for which there is no foreseeable future use; and second, if disposal at sea is carried on under conditions or to an extent that later appears to have been ill-advised or dangerous, there is no way of correcting the situation. If for any reason it becomes desirable to deposit materials on the sea floor for future recovery, appropriate methods, beyond the scope of this report, will need to be developed.

2.3. Accidental Hazards

In the laboratory, in the factory, and on land burial sites, hazards involved in radioactive wastes can be minimized or eliminated by posting notices, by erecting barriers, or by actually policing the areas. None of these can be done at sea except under extreme situations such as the tests at Bikini and at Eniwetok. In all planning for sea disposal every possible precaution must be taken to avoid hazards to individuals through accidental and unknowing contact with potentially dangerous amounts of the isotopes. The situation is analogous to "fire prevention" rather than "fire fighting." Procedures should be such that the accessible portions

 $460860^{\circ} - 58 - 2$

of the ocean are not altered to any appreciable extent. Then in this case warnings and policing are quite unnecessary.

2.4. Rate of Disposal

Waste isotopes with long half-lives (more than 1 year) are those that are most likely to be introduced into the ocean. At the present time the potential amounts are small, but in the foreseeable future these may have to be disposed of at a high rate. It is not possible at this time to set "maximum permissible concentrations" for sea water similar to those for potable water. If the rate of supply is greater than the rate of decay, the total amount of activity in the sea will increase. It must be recognized that this will in theory set a limit on the rate at which material can be introduced into the ocean. In practice, this may prove no limit at all because of the immense volume of the ocean waters. On the other hand, we cannot assume that the materials introduced will be uniformly distributed through the entire volume. Nothing is known of how long it would take for material introduced at any locality to be more or less uniformly distributed throughout a large portion of the ocean waters, but it is undoubtedly measured in thousands of years. Therefore, there will be a practical limit to how much can be introduced at a single location or dumping ground.

The "maximum permissible concentrations" of radioactive isotopes in sea water will differ from those in drinking water. The greatest hazard will probably arise through the accumulation of radioactive isotopes in organisms that are later consumed as human food.

2.5. General Responsibilities

Any proposals for sea disposal of radioactive wastes should cover the entire problem of packaging, transportation, temporary storage, and methods and locations of discharge into the ocean. Proper safety regulations already in effect govern certain of these procedures but by no means all of them. There may be certain legal questions concerning sea disposal of radioactive wastes that must be resolved. At the present time there is no established authority to regulate matters of possible interest such as disposal areas, maximum limits, and records. The principles set forth in this Handbook are, therefore, not within any framework of recognized regulations.

3. Characteristics of the Ocean

Although the oceans are bodies of tremendous volumes, an appreciation of the broad problems involved in the disposal of radioactive wastes in the oceans should take into account not only the volumes concerned but also other physical, chemical, and biological characteristics. It is hoped that a brief outline of certain aspects of oceanography, largely extracted from "The Oceans" [1],³ may prove helpful as a background in rendering judgment on this problem.

3.1. Volume of Ocean Waters

All oceans..... 1.37×10^{9} km³, or 3.27×10^{8} mi³ Atlantic Ocean.... 0.35Indian Ocean..... .29 Pacific Ocean..... .72

3.2. Relief of the Ocean Basins

Continental land masses are surrounded by a *continental shelf* that is characterized by a very small seaward slope. The continental shelf may extend seaward to depths of 200 m (100 fathoms) or more beyond which there is a much steeper slope extending down into the deep ocean basins with depths of about 4,000 m or more. The average width of the continental shelf over the earth is about 30 miles, it varies from virtually zero off certain mountainous coasts to several hundred miles off coasts with extensive coastal plains. In general, the shelf is wider off the east coast of the United States than it is off the west coast.

The shelf is not smooth but is characterized by minor terraces, hummocks, and depressions. In certain areas submarine valleys and canyons cut into the shelf. The ocean basins contain features of relief as large as those found on land. Depths exceeding 6,000 m are limited to deep trenches paralleling coastal mountain chains and island arcs like the Aleutian Islands. Certain portions of the ocean are partially isolated by submarine ridges that greatly restrict the exchange of water with the adjacent deep ocean. The Black Sea and Mediterranean Sea are the classical examples. Partially isolated basins in the sea floor exist off Southern California. The Black Sea and certain fjords in Scandinavia and along the coast of British Columbia and Alaska

 $^{^3\,{\}rm Figures}$ in brackets indicate the literature references at the end of this report.

are stagnant; that is, all dissolved oxygen has been utilized at subsurface levels and the deeper waters contain hydrogen sulfide.

3.3. Chemical Composition of Sea Water

Sea water is an aqueous solution of a variety of dissolved solids and gases containing small amounts of suspended material of organic and inorganic origin. It has been found that regardless of the absolute concentration of the dissolved solids, the ratios between the more abundant substances are virtually constant. The concentration of the dissolved solids is generally expressed as the *salinity*, a value slightly less than the total dissolved solids present. Units used are parts per thousand by weight $(^{\circ}/_{\circ\circ})$. For most ocean waters the salinity is between 33 and $37^{\circ}/_{\circ\circ}$. Lower values occur in coastal areas and in and near river mouths; higher values are found in areas of excessive evaporation, such as the Red Sea. Vertical variations in salinity are usually small. In the open ocean in midlatitudes the salinity first decreases with depth and then increases slightly in the deeper water. The relative quantities of the major dissolved constituents are shown in table 1.

TABLE 1. Major constituents of sea water

The quantities given in this table are for a salinity of $34.325^{\circ}/_{\infty}$ and can be taken as representative of ocean water. It will be noted that they make up 99.9 percent of the dissolved solids.

Ion	%, (parts per thousand)	Percentage of total dissolved solids
Anions:		
Chloride	18.98	55, 04
Sulphate	2, 65	7.68
Bicarbonate	0.140	0, 41
Bromide	.065	. 19
Fluoride	. 0013	. 00
Borie acid	. 0260	. 07
Cations:		
Sodium	10.56	30, 61
Magnesium	1.27	3.69
Calcium	0.40	1, 16
Potassium	. 38	1.10
Strontium	.013	0.04
Total		99.9

There are 44 elements listed in table 2, to which may be added the dissolved gases nitrogen, oxygen, neon, helium, and argon. It will be noted that a range in values is given for a number of elements present in small quantities, notably silicon, nitrogen (in compounds), phosphorus, arsenic, iron, manganese, and copper. These are substances essential to plant life that under certain instances are reduced to zero. Too much significance should not be attached to many of the individual values, as in many cases they are little better than estimates.

TABLE 2.	Elements present in solution in sea water with a salinity of	
	$34.325^{\circ}/_{\circ\circ}$ (omitting dissolved gases)	

Element	Quantity (in milligrams) of element in 1 kg of sea water	Element	Quantity (in milligrams) of element in 1 kg of sea water
Chlorine Sodium Magnesium Sulfur Calcium Potassium Bromine Carbon Strontium Boron Strontium Boron Silicon Fluorine Nitrogen (compound) Nitrogen (compound) Nitrogen (compound) Nitrogen (compound) Nitrogen (compound) Nitrogen (compound) Aluminoum Rubidium Lithium Phosphorus Barium Iodine Arsenic Iron Manganese	$\begin{array}{c} 400\\ 380\\ 65\\ 22\\ 18\\ 1.4\\ 0.02\ to\ 4.6\\ 0.02\ to\ 4.0\\ 1.4\\ 0.01\ to\ 0.7\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2$	Copper	.005 .004 .004 .002 .0005 .0005 .0004 .0003 .0003 .0003 .0003 .0003 .0003 .00003 .00004 .00006 0.00006 0.2 to 3×10 ⁻¹⁰ Trace Trace

Parts per million.

 Recent analyses indicate that this value should be reduced to about two-thirds of the content reported. (This table is taken from "The Oceans" [1].)

The values in table 2 can be used to estimate the total amount in metric tons of any element in the ocean by multiplying by the factor 1.42×10^{12} . Values in terms of grams per cubic kilometer can be obtained by use of the factor 10⁹. For example, from the higher value shown for radium, it may be estimated that the ocean contains $3 \times 10^{-10} \times 1.42 \times 10^{12} = 4.2 \times 10^2$ metric tons; or to put it in more familiar terms, 420 million curies.

Sea water is normally slightly alkaline. In contact with the atmosphere the pH varies between 8.1 and 8.3. In water in which virtually all the dissolved oxygen has been converted to carbon dioxide in respiration, the pH will be about 7.5.

Dilution by river water and the freezing and thawing of sea ice *tend* to alter the relative composition, but the effects are very slight. As a working hypothesis, it is generally safe to assume that the material introduced by the rivers is balanced by biological or chemical deposition on the sea floor. This appears to be reasonable for calcium, silicon, phosphorus, manganese, iron, and several others. From the estimated rate of deposition of deep-sea sediments, some idea can be gained of rates of removal of certain elements.

3.4. Physical Properties of Sea Water

Physical properties of sea water, with the exception of transparency and color, are functions of temperature, salinity, and pressure. Temperatures range from about -2° C the initial freezing point) to about 30° C. With few exceptions the highest temperatures occur at the surface or in a homogeneous surface mixed layer that may be as much as several hundred meters thick. Below this the temperature decreases to about 5° C at 1,000 m, and to about 1° or 2° C at the greater depths. In deep ocean basins the adiabatic heating is sufficient to produce slight increases in temperature with depth. In high latitudes temperatures will be within a degree or two of 0° C from top to bottom.

Hydrostatic pressures in the sea increase approximately 1 atm for each 10 m in depth. At 2,000 m the pressure will be about 200 atm, or 3,000 lb/in².

The density of sea water decreases with increasing temperature but increases with increasing salinity and pressure. The normal range of the density *in situ* in the ocean is between about 1.02 and 1.06. Except in dilute sea water, the temperature of maximum density is lower than the freezing point. Hence the density increases until the freezing point is reached at about -2° C. As soon as ice forms, the "brine" of slightly higher salinity sinks to the sea bottom.

In general, the other physical properties of sea water do not differ materially from those for fresh water except for such characteristics as the electrical conductivity.

Many of the processes in the sea depend upon the vertical distribution of density. The generalized picture is that the deep ocean basins are filled with waters of relatively high density produced in high latitudes. "Floating" on this is the warm low-density surface-layer of the lower and middle latitudes. Beneath the surface mixed layer, is a zone of density increase that tends to inhibit vertical mixing and overturn. The large effect of temperature on density is such that a first approximation of the change of density with depth can be assumed to be the mirror image of the temperature distribution.

3.5. Currents and Mixing

Currents in the sea are generated and maintained by differential heating and cooling and by energy imparted by the winds. Such water movements are relatively shallow, usually less than a few hundred meters, and speeds rarely exceed 0.5 to 1.0 m/sec (1 to 2 knots). Only in the Gulf Stream, Kuroshio, and other isolated instances do speeds reach 2.5 m/sec (5 knots). In the deep basins the magnitudes of the currents are not known, but are believed to be of the order of a few centimeters per second (a fraction of a mile a day). In addition to the major current movements, tidal currents and other periodic oscillations will contribute to the local motion. Because this motion is turbulent, it tremendously increases the rates of mixing in the sea. The existence of density layers, however, interferes with vertical mixing, so that materials tend to be spread laterally rather than vertically.

3.6. Biology of the Oceans

Plant growth in the sea is limited to the surface layers where there is adequate illumination. The thickness of this layer rarely exceeds 75 m. It will be less in turbid coastal waters and will be reduced to zero in high latitudes during the winter season. Plants growing within this layer remove CO2 and the other substances essential for plant growth. With the exception of a few higher plants inhabiting shallow water, only algae and dinoflagellates occur in the sea. Large fixed algae are abundant in coastal areas in depths with adequate light, but for the oceans as a whole the microscopic diatoms and dinoflagellates are the great food producers. The photosynthesis in the surface layers must provide the primary food source of all animal life in the sea. Animals are present at all depths but are most abundant in the upper several hundred meters and on the sea bottom. The attraction of gravity on dead organisms and on fecal material is such that there tends to be a general removal of the essential elements from the surface layers. Most of the

detrital material is ultimately mineralized and returned to solution by bacterial action, but the *net* effect is for this to occur at depths below the photosynthetic layer. Regional plant production will be large where there are processes that by one means or another bring fertilizer-rich water back to the surface. The principal agencies that do this are winter overturn in high latitudes, upwelling along certain continental coasts (California, Peru, and the West Coast of South Africa), and violent turbulent mixing associated with strong tidal currents in shallow water. In such areas the plant production is probably of the same magnitude as that obtained on fertile land. On the other hand, in the open ocean in middle and lower latitudes where the plant foods are depleted, there are "desert" conditions.

No significant quantities of marine plants are used for human consumption. The exceptions are certain of the larger algae that are used as vegetables and also as cattle feed, and others that are sources of commercial products such as agar, and the group of alginate products made from kelp. Animals taken for human food include mammals, fish, crustaceans (crabs, lobsters, shrimp), mollusks, and a few representatives of other groups. In discussions of productivity, it is necessary to consider food chains. For example, oysters may feed directly upon the diatoms and dinoflagellates. On the other hand, high predators, such as the tunas, may feed on smaller fish, that in turn have eaten other fish that depended upon small arthropods that were the original grazers feeding on plant life. Virtually nothing is known of the efficiency of tissue formation at each step in the food chain but it is estimated that it is about 10 percent. In other words, there is a decrease by an order of magnitude in the living organic matter at each step in a food chain.

The microscopic plant life is referred to collectively as phytoplankton; the small floating animals that feed upon it and upon each other, as zooplankton. During the daylight the zooplankton tends to remain below the lighted photosynthetic layer, rising at sunset to feed during the night, and returning to deeper water at sunrise. This mechanism contributes to the net removal of materials from the surface layers. Zooplankton and some fish (such as the herring) are filter feeders and gather in the particulate food indiscriminately. The same method of feeding is apparently true for many of the bottom-living marine invertebrates such as mussels, clams, barnacles, etc. The larger and more active forms are apparently more selective. Certain forms of fish and some invertebrates, such as crabs, are scavangers, eating any organic material that comes their way. Some are mud eaters, depending upon the detrital material in the sediment for their supply of organic matter.

Various indirect methods have been used to estimate rates of production and total annual production of plants in various localities. Daily rates range between 0.01 and 1.0 g of carbon per cubic meter with an average of about 0.15. Estimates of annual production on an areal basis range between about 10 and 1,000 g of carbon per square meter per year. If it is assumed that photosynthesis is limited to a layer 50 m thick, these values become 0.2 and 20 $g/m^3/vear$. Plant production in most regions is limited by the depletion of the fertilizers, phosphate and nitrate. It is possible to determine concentration factors for the elements that are present in the sea in small amounts. For example, carbon appears to be concentrated in marine organisms by a factor of about 10³, nitrogen and phosphorus by factors of 10^5 or 10^6 . iron and copper by a factor of 10³. As stated earlier, the microscopic plants are apparently able to remove substances such as phosphate and nitrate almost completely.

Rates of growth are almost unknown. Phytoplankton increase by binary fission, roughly once a day, and consequently under favorable conditions will accumulate at tremendous rates. Zooplankton forms probably go through several life cycles in a year. Fish of commercial importance have life spans of at least several years.

Some mention has been made of the daily vertical migrations of the zooplankton. The same apparently applies to many species of fish and mammals. On the other hand. many bottom-living forms such as halibut, flounder, etc., may spend their entire adult lives on the bottom. There is a tremendous range in the extent of the horizontal migrations. Certain forms such as eels and tuna travel thousands of miles, whereas others spend their entire lives within a limited area. Migrations are, however, the rule rather than the exception. It is only some invertebrates such as ovsters and clams that remain in one place after settling of the larvae. Fish and other forms used for human food are most abundant in the upper few hundred meters and they are especially abundant on the continental shelf. For economic reasons, extensive fisheries tend to be on or near the continental shelf in proximity to centers of large populations.

460860°-58----3

12

The animal population on the deep ocean floor is very sparse in comparison to shallow bottoms. There is no commercial fishery of the deep sea bottom and no significant migration of bottom-living forms between the deep and shallow waters.

3.7. Marine Sediments

The marine sediments in shallow water do not differ materially in composition or texture from those of the adjacent beaches and coasts. On the continental shelf the sediments are sandy or silty except in depressions and off river mouths where soft muds will be formed. In the deep ocean basins the sediments are typically fine-grained clays with variable amounts of skeletal remains of plauktonic plants and animals. These may be siliceous (diatoms and radiolarians) or calcareous (coccolithophores, foraminifera, and pteropods). The proportion of siliceous remains in the sediments is rarely very high. Certain calcareous sediments contain virtually no materials other than calcium carbonate. Sediments in depressions are soft and fine-grained; those on elevations, regardless of depth, are hard and coarse-grained; or may be lacking, so that the rocky surfaces of the elevations are exposed. In shallow water the calcareous remains of certain algae and animals will accumulate in the sediments. In warm tropical waters, so-called coral reefs and islands may contain nothing except the remains of corals and calcareous algae. Deep sea sediments are, therefore, made up of fine-grained material of terrigenous origin (red clay), volcanic debris, skeletal remains derived from dissolved material, and some decomposable organic detritus. The accumulation of organic detritus implies the removal from the water of certain of the plant fertilizers. In addition there are elements that by some means apparently accumulate on the sea floor; these include manganese, iron, phosphorus, and radium. Whether or not biological processes are involved in these cases, and in others, is not definitely known.

Rates of sedimentation for the deep-sea deposits have been estimated to be of the order of 1 cm per 1,000 years, being less for red clay and slightly more for the calcareous deposits. Rates of deposition off rivers will be large but, except in particular areas, the accumulation on the shelf is very small. On the continental slopes, rates of accumulation are probably of the order of tens of centimeters per 1,000 years. Most of the organic detritus reaching the sea floor is undoubtedly broken down by bottom-living animals and bacteria. Where the supply is relatively abundant, burrowing animals undoubtedly overturn the sediments in the same way as earthworms do on land. However, in the deep ocean basins the sediments do not indicate any such overturn. The interstitial water does not differ materially from that in the water column above except in regions where, because of relatively high rates of supply of organic debris and low rates of supply of oxygenated water, stagnation develops and only anaerobic bacteria can survive. Such conditions exist in the Black Sea and certain fjords. In other coastal regions the sediments may be stagnant although the overlying water column is not.

The foregoing information indicates the mechanisms whereby materials introduced by rivers are removed from the water column, so that for many purposes it is reasonable to assume that a condition of dynamic equilibrium exists in the ocean. This, however, will not be true when we consider smaller areas or short time intervals. River water on entering the sea forms a "puddle" because of its lower density. This layer spreads and gradually mixes with the sea water, primarily because of turbulence created by wind waves and tidal currents. Solid particles tend to flocculate and settle, and certain chemical precipitation may occur for such elements as iron and manganese. It is estimated that each year rivers introduce 2.7×10^9 metric tons of dissolved solids and comparable amounts of particulate sedimentary material.

3.8. Pollution

Activities of man contribute to the supply of materials to the sea and sometimes affect the biologic balance. Locally, these effects are sometimes sufficient to cause unfavorable changes in the natural environment. As a result, fish and other forms taken by sportsmen and commercial fishermen may decrease in abundance or disappear entirely; or an area may be rendered unattractive for human use and recreation. Such effects are usually called pollution. In other cases, dumping of nuwanted materials into the sea has no apparent detrimental effect, and consequently few or no objections are raised. To date, two types of pollution seem to be the cause of the greatest trouble. These arise from (a) the discharge of large quantities of organic debris, such as domestic sewage and industrial effluents from the food and beverage

industries, and (b) the discharge of large quantities of industrial effluents that contain toxic chemicals. Whenever there are large local supplies of organic debris there is an increased probability of oxygen depletion, which will then kill all higher forms of life. Chemical wastes can be toxic directly to the fish or to some lower form involved in the food chain. To avoid undesirable pollution, submarine pipelines are sometimes extended as far as a mile off shore. sites of discharge are selected so as to be in regions of strong currents and active mixing, or in extreme cases the material is taken out to sea by barge and released in such a way as to minimize undesirable effects. In many instances pollution reaches damaging proportions before any remedies are sought or controls are established. Although recovery from damage due to organic pollution is fairly rapid, effective recovery for long-lived radioactive pollution may require long periods of time.

The altered and narrowed fauna in industrial harbors compared to previous rich growth shows the results of cumulated pollution. Control of dumping of domestic and industrial wastes is a matter of concern to Federal. State. and local agencies concerned with fisheries, public health, and recreation. Because of their responsibilities for navigable rivers and harbors, the Army Engineers have certain regulatory powers. Enforcement of regulations is in the hands of the local authorities and the U.S. Coast Guard. The authority of all such agencies usually ends at the 3-mile territorial limit. Unless it is in any way a danger to shipping, anything can be dumped anywhere on the high seas. The only United States control over such practices is the authority of the U.S. Coast Guard to control the types and quantities of dangerous substances that can be carried aboard U.S. vessels. The claims made in recent years to the national interests in the resources of the continental shelves indicate that in the foreseeable future regulatory control may be extended beyond the present 3-mile limit (or greater distances off certain foreign countries). At the present time, there are no regulations for disposal of radioactive wastes on the high seas. For such regulations to be fully effective, they should be by international agreement.

The introduction of radioactive wastes into the ocean is an entirely new practice and unless conducted properly can result in new kinds of pollution in the sense given above. As mentioned, protests against waste disposal arise because of catastrophic or cumulative effects on sea life, spoilage of the shoreline, or creation of obvious public-health hazards. The indiscriminate dumping of radioactive wastes could lead to a far more insidious type of pollution, primarily because of the absence of immediate effects that would arouse public indignation. The onus therefore rests upon agencies responsible for radioactive-waste disposal to see that such practices never will constitute a pollution hazard.

4. Fate of Radioactive Materials Introduced into the Ocean

4.1. Factors Favoring Dilution or Dispersal

Two primary factors should be considered in the disposal of wastes in such a way as to minimize or eliminate hazards. These are dilution (or dispersal) and isolation. Disposal in deep water far from land takes advantage of both factors. If the materials are in such a form that they will come to rest on the sea floor or actually penetrate the soft sediments, they can be considered as removed from all foreseeable opportunities for human hazard, either through direct contact or indirectly through raw materials or marine animals used as food.

Among the natural characteristics that will reduce or eliminate hazards from radioactive wastes are:

(a) *Natural decay*: The degree of reduction of hazards will depend upon the individual isotope.

(b) *Isotopic dilution:* Reference to table 2 will indicate whether or not the naturally occurring element is present in solution in sufficient abundance to reduce the hazards that might arise from the accumulation of the radioactive isotope by plants and animals.

(c) *Dilution:* The mixing of the water will rapidly reduce local concentrations and, except on the continental shelf, the net effects of current movements and mixing will tend toward horizontal spreading. Initial dilution or dispersal at the time of disposal will, of course, favor this process.

^{*} At this time it is necessary to examine some of the hazards that may arise from sea disposal of radioactive wastes.

4.2. Direct Hazards

To minimize or eliminate hazards from packaged wastes, containers must be of such a nature that they sink to the bottom, remain intact until they reach the bottom, and are not dumped in any region where they might be accidently or intentionally retrieved during fishing or salvage operations. Bulk wastes shall be discharged in such a way that the initial concentrations are below levels that might be dangerous. Accumulations of certain isotopes might occur on nets and on ships' hulls, sanitary systems, and condenser systems. The exposure of swimmers precludes the disposal of materials near beaches used for recreation. Future large-scale desalination of sea water for irrigation or for industrial or domestic use might conceivably create hazards in the processing plants.

4.3. Indirect Hazards

Indirect hazards are those that might arise through the accumulation of radioactive isotopes by marine organisms used for human food. As described in the section on the chemistry of sea water, it is possible for a few elements to be concentrated by a factor of 10° . This would mean that all of the element originally present in 1 m^s of sea water is concentrated in 1 cm³, or 1 g, of fish. The only elements known to be concentrated to this extent are phosphorus and nitrogen, and hazards from radioactive isotopes of these elements are lessened because of their short half-lives. Whether any other element is concentrated to this degree is unknown, but it would seem reasonable to assume that a factor of 10^3 might be anticipated. This would correspond to the accumulation in 1 g of tissue of the material initially present in 1 liter of water.

As an example, radium may be used. One liter of sea water contains about 1×10^{-13} g. Assuming that this is concentrated 1,000-fold, if a person ate 100 g of fish per day for 25,000 days (70 years), he would ingest a total of $10^{-13} \times 100 \times 2.5 \times 10^4 = 2.5 \times 10^{-7}$ g, or 0.25 µc. This example is not intended to do more than indicate a very conservative way by which tolerable limits for radioactive isotope concentrations might be established.

The maximum permissible concentration in drinking waters for radium has been set at $4 \times 10^{-8} \,\mu c/cm^{3}$ [2]. This is equivalent to 4×10^{-11} g/liter, a concentration 400 times greater than that naturally occurring in sea water. If our fish supply were grown in water containing this amount of radium, the indirect hazards would be much increased. However, if it were possible to allow concentrations of radium as large as this, namely, 400 times greater than the amount naturally present, it is easy to determine how much radium could be added to sea water to raise the content to drinking-water tolerance. A cubic kilometer contains 10^{12} liters. Therefore: radium in 1 km³=10⁻¹³ g/liter×10¹² liters/km³=0.1 g. To raise the concentration to the permissible level would permit the addition of 39.9 g/km³.

These calculations emphasize the fact that it is highly improbable that disposal of radioactive wastes at sea will ever materially affect the ocean as a whole. Local concentrations, however, might become hazardous unless precautions are taken to avoid their accumulation by marine organisms. This emphasizes the desirability of disposal in the deep basins or at initially low concentrations.

Studies made on the disposal of chemical wastes from barges [3] afford an estimate of the magnitude of the "immediate" dilution. While the barge was underway the wastes were discharged through the two vents located at the bottom of the barge. The cross section of the barge was about 7×5 m and it was being towed at a rate of 6 knots (300 cm/sec). The turbulent wake was therefore generated at the rate of $7 \times 5 \times 3 = 105$ m³/sec, giving immediate dilution of 300 to 1 for wastes being discharged at about 0.3 m³/sec. In addition the turbulent wake spreads both horizontally and downward; so it can be assumed that the immediate dilution is of the order of 1 in 1,000. This could be increased by another factor of 10 by reducing the rate of discharge. It is therefore entirely feasible to obtain immediate dilution by barge disposal of the order of magnitude of 1 part in 10,000. These generalizations assume that the waste liquid is entirely miscible with water and of equal or slightly greater density. Whether or not the isotopes remain in solution or precipitate when mixed with sea water does not appear to be a major factor as long as the disposal is made over deep water. Engineering study of the limitations of barge disposal of radioactive wastes appears to be warranted.

5. Considerations for Selection of a Disposal Method

The choice between sea disposal and other methods will depend upon the quantity and type of radioactive waste, its physical and chemical state, and upon the convenience for the agency involved. The selection of the best method of disposal at sea will depend upon more factors than can be considered here in detail. It is, however, desirable to outline the general criteria that should be met and to indicate the various means that might be employed in radioactivewaste disposal.

The practical solution of waste-disposal problems will involve consideration of the following characteristics of the isotopes involved:

(a) Half-life,

(b) Chemical properties, and initial chemical state,

(c) Physical state (liquid, solid, occluded, or adsorbed on inert material),

(d) Biological properties (radiotoxicity, biochemistry of element), and

(e) Amount on hand and rates of supply.

The chemical properties will be important with respect to whether or not the isotope will react with the dissolved constituents in sea water. The physical state will be a determining factor in many problems and may dictate the means of disposal. The indirect hazards will depend upon the biological properties of the isotope (such as its radiotoxicity), the role it may play in the bioeconomy of the sea, and the possibilities of its accumulation in human food supplies. Finally, the selection of any acceptable method of disposal will depend upon the amounts of the isotopes involved and upon whether or not the disposal is a single event or must be planned for repeated operations. These items will usually be known or can be estimated with reasonable accuracy.

Consideration of the criteria that must be met in sea disposal is complicated by our lack of knowledge of many of the factors involved, so that they can be stated only in general terms. The most important criteria are that methods of radioactive-waste disposal should (a) avoid foreseeable direct hazards, (b) avoid foreseeable indirect hazards, and (c) avoid undesirable long-term consequences.

Direct hazards, by definition, are those that might arise from exposure to dangerous levels of radiation (see section 4.2). Therefore the waste material should be *isolated*, to avoid the possibility of close proximity, or should be *diluted* to a level that is completely safe. Effective isolation can best be achieved by disposing of the material in the deep ocean far from land. Virtually complete isolation can be achieved by depositing the material on or in the sediments of the deep ocean floor. Obviously, isolation is the prime consideration for large amounts of isotopes, insoluble materials, contaminated equipment, apparatus, etc. This will also be true of packaged materials *in any amounts*, for it is most undesirable to permit the package and its contents (or whatever type) to be recovered. Dilution is the obvious method of disposing of small quantities of isotopes, particularly those of short half-life and those in solution. The problem becomes more complicated when the amounts are large.

Indirect hazards, by definition, are those that might arise from the accumulation of potentially harmful amounts of radioactive isotopes in marine organisms used for human food (see section 4.3). To avoid such hazards the objective should be to dispose of waste materials in such locations that the likelihood of their reappearing in food is minimized. This again involves the principles of isolation or dilution of the material. However, the concentrations permissible in the water are minute compared to those that represent direct hazards; and as described in section 4.2, it is the processes of biological accumulation that will establish the permissible concentration of isotopes in the ocean waters. Packaged waste deposited on the bottom of the deep sea does not contribute any foreseeable indirect hazard, because there is no significant biological exchange between the deep sea and the surface layers and because there is no fishing at depths of 1,000 fathoms and more. Bulk disposal, which is made at or near the sea surface, does not satisfy the criterion either of isolation or of immediate dilution to negligible activity levels. However, practical consideration of the problem shows that the quantities to be disposed of, the types of material, etc., will be important factors in deciding whether or not bulk disposal is allowable. In all cases depth of water and distance from shore, as well as major fishing areas and shipping lanes, should be considered.

Undesirable long-term consequences are those that might arise because of the slow accumulation of long-lived radioactive isotopes in the ocean. If the rates of disposal exceed the rates of decay it is obvious that the amounts present will increase. If the materials form insoluble precipitates, or were originally insoluble, they will accumulate on the sea floor; and as long as this is in deep water they are not hazardous. If, however, the materials are soluble or were in solution, processes of mixing and the ocean currents will

ultimately bring them near the sea surface and into coastal areas where biological processes may concentrate them. Because of the tremendous volume of the ocean waters, it appears at the present time, that this is a negligible hazard. In reviewing long-term consequences of radioactive-waste disposal, it should be remembered that the half-lives of many of the isotopes are long, compared to the probable life of the container. Furthermore, any damage to the container will accelerate the escape of the contents. Any assumption concerning long-term effects of wastes in the sea should consider that the container merely delays the diffusion of the material through the water mass. A further step toward retarding such accumulations in the water would be actually to bury the container in the sediments. The natural rate of sedimentation in the deep ocean basins is inadequate. However, if topographic elevations are avoided, the sediments are sufficiently soft that a dense container dropped from the sea surface would sink to depths of several feet into the ooze. Here it is in effect completely isolated unless heat generated by the contents is sufficient to produce convective flow in the surrounding sediments. Even if the container disintegrated, there would be limited opportunity for the escape of the contents into the water.

It is conceivable that the disposal of radioactive wastes into the ocean might someday attain such proportions that it would become necessary thenceforth to limit disposal to rates not greater than the rates of decay of the accumulated wastes.

6. Means of Disposal

For convenience, it is possible to consider all methods of sea disposal under three general types: Package disposal, bulk disposal at sea, and pipeline disposal.

6.1. Packaged Disposal

The problems of recommendations concerning packaged disposal have already been presented in this Handbook and will not be considered any further.

6.2. Bulk Disposal at Sea

Bulk disposal includes all operations in which radioactive wastes are discharged directly into the sea in unpackaged form. The tanks, barges, or other means used for transportation are, in effect, reclaimable containers. Bulk disposal has many advantages where the wastes are of large volume but relatively low radiation intensity.

In bulk disposal, it seems reasonable to assume that safety measures governing the transportation and handling of the material will set practical limits on radiation levels from the material after discharge. A primary consideration is to minimize the possibilities of the waste being concentrated by marine organisms and ultimately appearing in foods. This can be achieved by dumping the material far away from centers of population and of fishing activity and in the deep ocean where the abundance of plankton is small. It is preferable that the material be in such a form that it will sink when discharged into the sea. This could be achieved by preparing the material in the form of dense briquettes, pellets, or beads by mixing the isotopes with inert insoluble materials that could, if necessary, be of resistant ceramic or concrete. Such solid objects would sink rapidly and hence the material would be quickly carried to an inaccessible location. This procedure possesses a number of advantages if the quantities are large, and if the chemical and physical characteristics of the radioactive wastes lend themselves to such handling. The pelleted material can be handled in bulk and transported and discharged at sea with the same convenience as liquids; and it has the further advantage that it can be prepared in characteristic shapes or colors for easy identification and recovery if accidentally spilled. Such material shall be dumped only in areas where the water depths exceed 1,000 fathoms.

Wastes in liquid form will mix with sea water while being discharged, and advantage should be taken of ways that will accelerate mixing and dilution. An example of liquid waste disposal from a barge is described in section 4.3. To facilitate mixing, the wastes should be in a water solution having a density greater than that of sea water. Greasy or oily materials that would tend to float or coagulate and form a scum are unsuitable for bulk disposal because of the possibilities of the material drifting ashore.

Experimental studies may indicate conditions under which disposal of large quantities of bulk liquid wastes may be safely conducted in certain areas of depths less than 1,000 fathoms. Until such studies are made, except for small quantities, liquid wastes shall not be released in waters of depths less than 1,000 fathoms, except under experimental conditions.

6.3. Pipeline Disposal

One of the traditional methods of disposing of unwanted wastes is by means of pipelines entering the sea. Such means are used for domestic sewage and by many industrial plants. The very undesirable pollution resulting from such practices can be observed near any coastal community. To reduce the possibilities of such pollution, installations of longer pipelines have been made in order to have the outfall in deeper water and farther from shore. This reduces the concentration of material that reaches the beach because the turbulence and along-shore currents tend to disperse the material. Such systems presuppose that the effluent is of lesser density than the sea water, and will therefore rise and mix with the water over the outfall. Although submerged outfalls with discharge at a distance of a mile or more from the coast may appear to have certain advantages in ease of disposal, such systems fall far short of meeting the general requirements for safe disposal of radioactive isotopes. Disposal will usually be made near centers of population and in shallow water. The possibilities of direct hazards are great. In addition, the possibilities of indirect hazards are increased by the accumulation of isotopes that will occur in the water and sediments and therefore be available to organisms that will be used as food. For these and other reasons the disposal of radioactive wastes through pipelines is undesirable.

7. Designation or Selection of Sites of Disposal

Disposal of all packaged wastes shall be in regions where water depths exceed 1,000 fathoms. The disposal of bulk wastes shall also be confined to regions where water depths exceed 1,000 fathoms except for small quantities of liquid waste or as experimental studies indicate conditions under which disposal of liquid wastes may be safely conducted in other areas. Within these limitations, designation of specific sites does not appear necessary at the present time.

It may be stated immediately that from the public-health point of view, there is no short-term advantage to be gained from the designation of specific dumping areas for either packaged or bulk radioactive wastes. Long-term consequences, resulting from the gradual accumulation of isotopes in the water, will not be materially affected by the exact localities of disposal. It should be recognized that the dumping of radioactive wastes will raise the normal radiation background of the water. With the development of nuclear power for the propulsion of naval vessels, including submarines, and of nuclear weapons, detection by means of radiation-measuring systems may be a matter of military concern. It is believed, that the location of disposal of radioactive wastes may be of concern to military authorities.

The U.S. Coast Guard is responsible for all U.S. shipping, other than military vessels, and this agency is charged with the enforcement of many regulations governing safety of personnel, pollution, and activities of vessels. In problems arising in the disposal of explosives and industrial wastes, it is customary to designate specific dumping areas. Selection of such sites is a problem of mutual concern to the U.S. Navy, the U.S. Coast Guard, the U.S. Public Health Service, and the U.S. Fish and Wildlife Service. If experience indicates the desirability of large-scale disposal of radioactive wastes in the ocean, these and other agencies may become interested in the question of whether or not the designation of specific dumping areas is desirable; and if so, what specific localities may be appropriate.

8. Recommended Containers for Packaged Disposal in the Ocean

8.1. General Characteristics

Containers used for packaged disposal of radioactive wastes into the ocean should be designed, constructed, and filled in such a manner as to achieve the following objectives:

(a) Structural design to insure, under conditions of shipment and handling, that the package cannot be easily damaged or broken and will reach the bottom of the ocean without appreciable loss of contents;

(b) Sufficiently high specific gravity to insure sinking to the bottom;

(c) Sufficient shielding from radiation originating within the container to prevent excessive exposure of personnel during shipment, storage, or handling; and

(d) Size, shape, and accessory features to facilitate safe, convenient, and quick handling.

 $\mathbf{24}$

8.2. Materials of Construction

The most economical materials of construction commensurate with the above objectives appear to be concrete and steel in suitable combination. Adaptations of commercial "shapes" are advantageous where appropriate. The most common example of such adaptation is the use of standard 55-gallon steel drums, which serve as external containers and forms in which the radioactive materials are embedded in concrete. The National Institutes of Health have found standard concrete burial vaults generally useful for the same purpose [4, 5].

8.3. Design of Package

Although it is not considered appropriate to specify standard packages, the following comments on current practices may be found helpful. A common method of use of steel drums is to pour several inches of concrete into the bottom, build up the content to within a few inches of the top by placing radioactive objects near the center and pouring concrete around them, and complete the package by filling to the top with concrete. In other cases the radioactive material is confined in a smaller drum concentric with the outer one and the space between them filled with concrete.

Eyes or rings for convenient handling should be cast in the concrete or fastened to the outer metal container. The degree to which reinforcing of the concrete should be used will depend upon the nature of the contents. Steel reinforcing should be designed to prevent rapid loss of contents in the event that the package is ruptured by hydrostatic pressure. In the event that the package contains objects that would normally float, reinforcing should be designed to prevent their separation from the concrete. In addition to rods, the use of heavy woven wire may be desirable.

Packages should be filled in such a manner as to be free of voids and, if possible, of considerable volumes of compressible materials. In general it is impractical to design a package containing large voids that will not be ruptured by hydrostatic pressures at depths of several thousand feet. In cases in which it is desirable to include large volumes of compressible material, it will be desirable to include appropriate means for equalization of pressure between such volumes and the exterior of the package without any loss of contents of the package from handling and transportation. For example, a small, thin-walled metal tube extending into the compressible material from outside, and with the inner end of the tube crimped shut to prevent leakage during handling or shipment. This should be acid resistant if the material is corrosive.

8.4. Specific Gravity of Package

The maximum density of water in the ocean is estimated to be approximately 1.1 g/cm³. It is recommended that the actual minimum density of any package prepared for disposal in the ocean should be at least 1.2 g/cm^3 or 75 lb/ft^3 or 10 lb/gal. In cases in which the determination of the volume of the package is subject to uncertainties, the design density should be increased sufficiently to insure that the actual density is never less than the above value.

8.5. Identification

Regulations of the U. S. Atomic Energy Commission, U. S. Interstate Commerce Commission, and U. S. Coast Guard require specification labeling of packages containing radioactive materials. In addition, it is suggested that persons preparing packages for disposal at sea may find it advantageous to provide a semipermanent identification impressed in a metal or concrete surface for use in the event that subsequently it becomes desirable to distinguish them from similar packages prepared by other persons. Such identification should include the name of organization preparing the package, the date, and (for use in case of accident) indication of the most hazardous radioisotope involved and of the level of activity contained.

9. Recommendations for the Transportation of Radioactive Materials

Packaging and handling of radioactive materials for transportation shall conform to regulations of the U.S. Interstate Commerce Commission and of the U.S. Coast Guard wherever applicable [6]. Storage of containers of such wastes before shipment should be under proper posting or in defined enclosures. In the actual handling and transfer of waste containers, any safe method is acceptable. Some commonly used procedures include hoists, fork lifts (using pallets), and similar mechanical devices.

For complete information on this subject, the shipper should refer to U. S. Interstate Commerce Commission and U. S. Coast Guard documents in which these regulations are published. A summary of the current regulations includes the following provisions: The design and preparation of the package shall be such that there will be no significant radioactive surface contamination of any part of the container; that the gamma radiation will not exceed 200 mr/hr or equivalent at any point of readily accessible surface; and that the gamma radiation at 1 m (distant) from any point on the radioactive sources will not exceed 10 mr/hr. These regulations provide also that, except by special arrangement, the radioactive content of any single package shall not exceed 2 c of radium, polonium, or any other member of the radioactive substance that disintegrates at a rate greater than 10^{11} atoms/sec.

All personnel handling or transporting radioactive wastes should follow recommendations given in National Bureau of Standards Handbook 42 to hold exposure to the minimum, and maximum-permissible-exposure values recommended in that publication shall not be exceeded. The whole-body exposure to gamma radiation shall not exceed 300 mr/week measured in air, and exposure of the hands shall not exceed 1,500 mr/week measured in the skin.⁴

Although recommendations cannot be made relative to the type of vessel to be used for sea disposal, present experience indicates that a hopper-type vessel, such as a garbage scow, may be the most suitable; because (a) waste containers don't have to be lashed to the deck during their sea journey, (b) the lower center of gravity (with containers in the hold) reduces the pitch and roll of the ship, and consequently (c) the hazards of the dumping operations at sea are lessened.

10. General Responsibilities and Problems for Consideration

It is the purpose of this Handbook to bring to the attention of those concerned, the many different factors that should be taken into account when radioactive wastes are to be dumped into the ocean. In many instances, it has been impossible to give anything more than general statements. Knowledge concerning the physical processes that will distribute the wastes through the ocean waters is almost completely lacking. The biological processes by which isotopes may be concentrated by marine organisms are, as yet, quantitatively unknown and for this reason it is not currently possible to set maximum permissible levels for sea water. Such values should be established for the guidance of those concerned with waste-disposal practices and for those agencies that may be charged with the responsibility of supervising disposal operations or of monitoring the conditions in the ocean. Natural backgrounds are virtually unknown and these should be determined at an early date.

Procedures for the disposal of packaged wastes are reviewed in this Handbook. For the handling of bulk wastes, each case may very well be a specific problem because of differences in types and amounts of the isotopes, their physical state, levels of activity, etc. In such cases, definite regulations may not be pertinent because the operations will probably involve specially designed facilities for both land and water transportation. The U. S. Interstate Commerce Commission and U. S. Coast Guard have procedures for the approval, under special permit, of the handling of shipments that do not fully meet the detailed provisions of published regulations but are consistent with the general standards of safety maintained by these agencies.

It has been pointed out that there exists no authority for the control of dumping of radioactive wastes on the high seas. To be of any real value, ultimate authority should rest on international agreement.

In a field as new as this, it is impossible to foresee what quantities of activity discharged into the oceans will produce undesirable consequences. Such recommendations as are made now and in the future must be reviewed from time to time in the light of new knowledge and experience. For this reason, as well as for others, adequate records of dumping operations shall be kept. Such information, listing amounts and types of different radioisotopes, methods of disposal, localities, and dates, shall be available to the U. S. Coast Guard or to other cognizant agencies upon request. At the present time, no agency has assumed this responsibility, but it is desirable that such agency be designated.

From this Handbook, it is apparent that problems of radioactive-waste disposal are of concern to many different interests. Responsibilities for the safe handling and disposal of the wastes rest upon one or more of the following: The original producer, the user, and the agency conducting the dis-

⁴National Bureau of Standards Handbook 59, Permissible dose from external sources of ionizing radiation (1954).

posal operation. Regulations or recommendations concerning the methods of transportation and disposal may be issued by public health authorities, the U. S. Atomic Energy Commission, the U. S. Interstate Commerce Commission, the U. S. Coast Guard, the U. S. Public Health Service, the U. S. Army Engineers, and/or other local, State, or national agencies. Selection of sites of disposal, methods of disposal, amounts, and/or rates of disposal should ultimately be matters of international concern. The practical considerations of national advice and/or control, monitoring of levels of activity, etc., have not yet been solved but are of concern to the U. S. Public Health Service, the U. S. Coast Guard, and the U. S. Navy.

It should be stated specifically that two major aspects of radioactive contamination have been completely omitted from this report; (a) the fate of materials entering the ocean from the atmosphere, and (b) the catastrophic effects that might arise from the accidental release of large amounts of materials resulting from disasters on or near the sea or those resulting from military action. These problems are being dealt with by other agencies, but many of the items discussed in this report are applicable to them.

11. References

- H. U. Sverdrup, M. W. Johnson, and R. H. Fleming, The Oceans (Prentice-Hall, Inc., New York, N. Y., 1952).
- [2] National Bureau of Standards Handbook 52, Maximum permissible amounts of radioisotopes in the human body and maximum permissible concentrations in air and water (1953).
- [3] A. C. Redfield and L. A. Walford, A study of the disposal of chemical waste at sea, National Research Council Pub. No. 201 (1951).
- [4] Clinton C. Powell and Howard L. Andrews, Radioactive waste disposal, Reprint No. 2314, U. S. Public Health Reports 67, No. 12, 1214 (Dec. 1952).
- [5] G. W. Morgan, Considerations on disposal at sea, Isotopics 3, No. 1, p. 5 (1953).
- [6] U. S. Interstate Commerce Commission regulations: Title 49, Code of Federal Regulations. Parts 71 to 78. Part 73, paragraphs 73.391 to 73.396, 73.401 to 73.404, 73.414, 73.427, 73.428, 74.566, 77.823, and 77.841 contain the principal regulations of especial interest to shippers of radioactive materials. Authorized reprints of parts 71 to 78 are issued by the Bureau of Explosives of the Association of American Railroads, 30 Vesey Street, New York 7, N. Y. Agent H. A. Campbell's Tariff No. S; and by the Tariff Bureau of the American Trucking Association, 1424 16th Street, N. W., Washington 6, D. C., Agent F. G. Freund's Tariff No. 7.

U. S. Coast Guard regulations; Title 46, Code of Federal Regulations, Part 146, Paragraphs 146.05–15, 146.05–17, 146.25–1, 146.25–20, 146.25–25 and 146.25–30 contain the regulations of especial interest to shippers. An authorized reprint of part 146 is issued by the Bureau of Explosives of the Association of American Railroads (see address above) as Agent H. A. Campbell's Tariff No. 6.

Submitted for the National Committee on Radiation Protection.

LAURISTON S. TAYLOR, Chairman.

WASHINGTON, April 23, 1954.