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PREFACE 

In the Fall of 1945 a course in Neutron Physics was given 
by Professor Fermi as part of the program of the Los Alamos 
University. The course consisted of thirty lectures most of 
which were gi.ven by Fermi. In his absence R. F. Christy and 
E. Segre gave several lectures. 

The present revision is based upon class notes prepared 
by I. Ealpern with some assistance by B. T. Feld and issued 
first as document LADC 255 and later with wider circulation 
as MDDC 320. 

flaving found the document most useful in teaching an intro- 
ductory course in nuclear physics, the author of the present 
revision felt that the material should be made more widely 
available, particularly to students of “pile engineering. ” 
To this end the notes issued as MDDC 320 have been revised 
and made available in this form for wider distribution. 

The principal revisions in the text consist of expanding 
some of the statements for clarity and adding sentences and 
footnotes for completeness. Problems have been numbered and 
grouped at the end of each chapter. Figures have been redrawn, 
and in a few cases new ones added. Occasionally additional 
material has been included which may not have been presented 
in the lectures. This has been done only where clarity de- 
manded more information and where the addition of recent . 
data inade the text more complete. 

The reviser was not privileged to attend the course on 
which these notes are based. It is his hope, however, that 
the revision will make available to a wider group of students 
the essential material given in what must have been an extremely 

useful and informative course of lectures- 

-J. G. B. 
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CHAPTER I 

NEUTRON SOURCES 

1.1 ALPHA-NEUTRON SOURCES 

One useful type of neutron source is based on the (a, n) reaction. Alpha particles incident on 
a target nucleus result in the ejection of neutrons. Consider the reaction Li’(a, n) B ‘e: 

Li’ + He’- BU ---, B” t nr + Q (l-1) 

In this equation B 1l is the intermediate state or compound nucleus. Q is the reaction energy and 
can be calculated from the mass-spectrographically measured masses of the atoms as. follows: 

Li’: 7.01804 m. u. 820. . 10.01605 m. u. 

He’: 4.00388 n1 : 1.00893 

11.02192 m. u. 11.02498 m.u. 

Q = (Mass on left) - (Mass on right) = - -00306 m.u. 

The masses given are those of the neutral atoms, i.e., the ‘*mass of an atom” is equal to the mass 

of the nucleus plus the mass of the associated electrons, and the units are defined by the relation 

1m.u. = lmassunit 

JMassofa*eutmlatomofthemostj, f l6 
= ~abundamisotopeofoxygen P 

Now, in equation (l-l) there is an excess of mass on the right side which means that the reaction 

is endothermic. That is, energy equivalent to the increased mass must be supplied to make the 
reaction energetically possible. This energy, denoted by Q, can be computed by conversion of the 
mass-difference - JO306 m. u., to energy units using the relation E = mc2. Since 1 m.u. is 

equivalent to 931 Mev (see problem 2 at the end of this chapter) the value of the reaction energy 
for (l-l) is Q = -.00306 l 931 Mev OS -2.85 Mev. The negative sign indicates that the reaction is 
endothermic, i.e., Q is taken positive for exotherdc reactions. 

The “threshold energy” for this reaction is that ztinirurc uabe of the kinetic energy which 
the alpha rust have in order to nake the reaction energettcally Qossible. The threshold 
is not the same as the Q value, since the end-products, as a consequence of momentum conservation, 
will retain some kinetic energy. In the Li’ (a, nl reaction the incident alphas will need sore than 
2.85 Mev of kinetic energy. 

+ A revision of class notem taken by I. tlalpern on a series 0P lectures by Professor Enrico Fermi of 
the University OS Chicago .s erplaiaeb in the p&face to this docoaent. 
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The exact threshold energy may be calculated by considering the initial momentum of the 

system. The total momentum of the colliding particles after the reaction will have to be the same 
as the total momentum before. Assuming the Li ’ to be initially statioaary and the alpha particle 
to have a velocity v, then the total initial momentum of the system* is just 4v. The velocity of 

the center of gravity vc is this momentum divided by the total mass of the system or 4v/11. The 
compound nucleus formed at collision (B rr) thus has a kinetic energy of 1 lvc ‘/2, that is one 

half the total mass, 11 units, times the square of vcI Substituting 4&l for vc yields (4/U) l 4v2/2 
or just four-elevenths of the kinetic energy of the incident alpha particle. The balance or 

seven-elevenths of the kinetic energy of the incident alpha particle is thus available for nuclear 
excitation. For the reaction to be just possible this fraction of the alpha’s kinetic energy must 

be just equal to the negative reaction energy Q: 

-Q = (7/11) (Threshold K.E. of alphas) 

:. Threshold K. E. of alphas = -(II/~) Q 

= -(11/7) ( - 2.85) 

= 4.48 Mev 

t l-2) 

Equation (1-2) means that in order for the reaction Li 7 ( a, a) B lo to take place the incident 

alpha particles must have a kinetic energy of 4.48 Mev or greater. 

An even more useful alpha-neutron reaction is that in which alphas are incident upon 

beryllium. The resulting reactions are exe theruic: 

Be ‘+ He”\C”+ n (I-3) 

Be0 + He’- 3He’+ n 

in which the first reaction is more probable and takes place with Q = ‘+5.5 Mev. Being 
exothermic there is ao threshold. However, the Coulomb repulsion of the alpha particles by the 

I beryllium nucleus diminishes the chance of a successful collision by a slow-moving alpha. The 
net result is that the yield of neutrons from a thin beryllium target (thin to reduce straggling 
effects from alpha-electron collisions) increases with increasing energy of the incident alpha 
particles as illustrated in the graph, Figure 1. 

1 The misses ape sirplffSed to the nasi+numbers ia tbls cralculatioa, i.e., Ll ', Be', B 10 and tt 1 

.re represented by lasses 7 , 4, 10, 1, reswctirely. this introdwes a negligible error in t+e somputed 
result. 

4593-4 
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Figure 1. Be0 (a,n)C”: Alphas on thin target of beryllium (0.22 mg/cm% 
(I. Halpem, NIIDC-716) 

The reaction of alphas with beryllium is used as a neutron source. Alpha particles may be 
polonium. The charac- supplied by naturally radioactive substances such as radium, radon, and 

teristics of sources using these materials may be uoderstood by examining the radium series, 
Figure 2. 
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RADWM SERIES 

SHOWING HALF-LIVES 8c ALPHA ENERGIES 

IDENTIFICATION OF 
ATOMIC 8i MASS NUMBERS 

Symbol Z A 

Ra. 88 226 

. Rn 86 222 

RaA (PO) 84 218 

RaB (Pb) 82 214 

RaC (Bi) 83 214 

RaC’ (PO) 84 214 

RaC” (Tl) 81 210 

RaD (Pb) 82 210 

R& (Bi) 83 210 

(99.96 %I RaF (PO) 84 210 

B-; ,’ 8’ + 
Rag (Pb) 82 206 

ROB RoC RoC’ 
26.8m 19.7m 

c 

(O.@J’w ig7 m 1.5 x10-*, 
a * a 7.68 Mev 

V ct 

Ro C” P- +’ ROD 8- l ROE - RoF 

1.32m 22Y 5.0d 
c 

I 

Figure 2 
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The radium-beryllium neutron source has an advantage in its half-life period being long enough 

to make attenuation normally negligible during any experiment or series of experiments. The usual 
weight ratios of Be:Ra are from 5:l to 3:l. A freshly prepared Ra-Be source must be “aged” to 
allow the daughter products (Rn, RaA, etc.) to come to equilibrium. The alpha-emitters among 
these daughter products contribute to the neutron production so that aging for about one month 
increases the neutron intensity by a factor of about 6 over the initial (“fresh” Ra) value. 

As may be seen by inspecting the series, in radium aged for a month there will be alphas 

available from Ra, Rn, RaA, and Ra (C + C’ ); as a consequence the neutron spectrum will be 
complex* with neutron energies up to 7.68 + 5.5 2 13 Mev. In addition the effect of passage of 
the alphas through the beryllium, even in finely powdered state, and the possibility of the resultant 

C* nucleus being left in an excited state tends to make the Ra-Be source emit neutrons with a 
fairly continuous distribution of energies. A distinct limitation of the Ra-Be source is the accompany- 

ing gamma radiation. 

T&is latter limitation is not present in the polonium-beryllium source. Polonium (RaF) emits 

alphas almost exclusively; the few gammas present in pure PO arise from the relatively improbable 
emission of alphas with energies sIightly below normal.? Polonium-beryllium sources have a half- 

life of 140 days which limits their usefulness to some extent. 

Radon can be used with beryllium. The gas is placed in a beryllium capsule. The yield is 

substantially the same as for a Ra-Be source; however, the half-life is only 3.8 days. 

The strengths of these natural (a, n) sources will vary with the details of their construction. 
In round numbers Ra-Be and Rn-Be sources will emit about 1 to 2 X 10’ neutrons/second/curie; 

Po-Be sources will emit about 2.8 x lo6 neutrons/second/curie. Using the technique described 
by H. L. Anderson and B. T. Feld in the Review of Scientific Instruaents, 18:186.(1947) a 
neutron yield is obtained for pressed Ra-Be sources as follows: 

M 

Fast neutrons/second/gram Ra = 1.7 x 10’ 
Be 

M Be + MB. Br 2 

Absolute measurements with this type source have been reported by F. G. P. Seidl and 

S. P. Harris in the Review of ScCentifJc Instraents, 18: 897 ( 1947). Their “Source No. 
38” consisting of 504 mc Ra and 3000 mg Be yielded (5.5 + 0.4) x 10’ neutrons/second. 

G. R. Gamettsfelder and M. Goldhaber in the Phystcal Review, 69368 (1946) report a Ra-Be 
source yield-of 6.8 x 10s neutrons/second/me Ra. 

Boron bombarded with alphas yields neutrons. The reactions are B U (a, n)N Irl and 
, Bm(a, n)N@ with the former reaction predominant. Yields are “‘2 x 1Oa neutrons/set/curie 

for boron-radium mixtures; BF, can be used with yields of * 10s neutrons/secjcurie. 

Similarly, fluorine yields neutrons in the reaction F ls (a, n)Nars. 

e A. I. ~~ichanor, Cosjdes Rendus Acadaie &%xce.s, U.S.S.R:, ao:aze (mm). w. I. chmg, Physical 
Reuiw, 70:622(1246). 

t w. I. chang in Physktal RevSew6a:eo (ia4s) @V~S ~0 alpha specttr. ii. T. Richards, L. Speck, 
1. 8. &=*M it, Phystcd Rev&w 70:118 (1048) discuss aeutroa spectra or PO-B and PO&Be IIOU~~S. 



6 AECD - ‘&64 

1.2 PHOTONEUTRON SWRCES 

Reactions of the (y,n) type can be used for neutron production. The gamma radiation is pro- 
duced naturally by radioactive or artificially radioactive sources. Targets are restricted to a few 
light elements, those elements in which a neutron is rather loosely hound. Beryllium (Be*) and 
heavy hydrogen (Ha) are alone among the isotopes having low enough (y,n) thresholds (I.63 Mev 
and 2.185 Mev respectively)* to be useful with natural gamma emitters. 

The RayBe source t yields neutrons in two energy groups (0.12 Mev and 0.51 Mev) since two 
#ium gammas are above the threshold. A practical rule for calculating the total number of 
-tons per second in a Ra+3e source is: 1 gm of Ra at 1 c* from I ga of Be gives 3 X 
10’ neutrons/second. 

A fairly complete survey of photoneutron sources has been made at Argonne NationaI Laboratory. 

Various artificial radioactive gamma emitters have been used with beryllium and heavy water. For 
some of these the emitted neutron energies have been measured. Table 1 Iists these data. 

SOURCE 

NA 24tD20 

NA~~+BE 

MNs8tD20 

MN6*tBE 

6~~~ tD,O 

GA 72tBE 

IN”~+BE 

SFJ’24t8E 

b14’ tD20 

LA”‘tBE 

Y t BE 

HALF-Li FE 

14.8n 

14.8~ 

2.6~ 

2.6~ 

14n 

14n 

54M 

600 

4on 

4on 

! 000 

TABLE 1. PHOT’3NEUTRON .SOURCES. 

*STANDARD SOURCE *OTHER SO.URCE 

29.0x lo* 2.7X lo6 

14.0 2.4 

0.31 0.029 

2.9 0.50 

6.9 0.64 

5.9 1.04 

0.82 0.14 

19.0 3.2 

0.68 0.062 

0.23 0.041 

NEUTRON ENERGY 
IN KEV 

MEAN MAXIMUM 

I 

220 320 

800 1020 

220 

{c:i: ( < 400 150 68 

130 

620 

220 
+20 

REFER 
ENCE + 

A.B 

A.8 

A.C 

A.B 

A.C 

A 

A.8 

A.B 

A.C 

A.C 

D 

t*Stmdsrdr souree is one curie at a distance Of one centimeter frOm one grsm Of target mIteris1. 
"Other" source Is described in Figure 1 of relerence A. 

t References: A. B. R~~~eil, D. Sachs, A. Wattenberg, R. Fields, Phys. Rev., 73: 64S(lQ48), on 
neutron yields. 

B. D. J. Hughes, C. Eggler, Phy.s. Rev., 72: 902(1947), on neutron energies. 

C. A. Wstteoberg, Phys. Rev., 71: 497(1947), on neutron enevgles. 

D. IL. D. O'Neal, Phys. Rev., 70: 1(1e46), on neutron energies. 

sY. L. Wiedenbeck and C. J. Yarhoerer, Physical Ret~ie~67: 54(1945). 

j-c. R. Gamertsfelder snd Y. Goldhaber in Physical RevieweQ: 36B(194S) report (L Bs-')'-Bs sowee with 
a yield 0r 6253 neutrons/second/llc Ra. 
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Other short-lived photoneutron sources have been investigated (reference C of Table I). These 
include F”’ (12s) + Be, Al’* (2.4a) + Be and Cls* (37m) -I- Be, all of which have greater than 0.1 
useful gamma ray per disintegration. (This is to be compared to Na24 with one gamma ray of 2.8 Mev 
per disintegration.) As’~ (26.8h) t Be and As’~ (26.8h) -t Da0 provide relatively less efficient 
neutron sources with 0.1 and less than 0.01 useful gamma per disintegration, respectively. 

In addition to using gamma radiation from specific radioisotopes the radiation from fission 
products may be used. Photoneutron yields from U “s fission products irradiating heavy water are 

described by S. Bernstein, W. M. Preston, G. Wolfe, R. E. Slattery in the Physical Review 71: 573 

(1947) and also 72: 163 (1947). 

Gamma radiation produced in betatron or Van de Graaf accelerators may be used to generate 
photoneutrons. Yield curves for Van de Graaf gammas on beryllium have been determined by. 
M. L. Wiedenbeck, Phys. Rev; 69: 235 (1946). 

1.3 NEUTRON SOURCES USING PARTICLE ACCELERATORS 

The deuteron-deuteron reaction, H”(H*,n)He’, can be used to produce neutrons. Deuterons, 

accelerated with any suitable source of electrostatic potential (e.g., Van de Graaf, Cockcroft-Walton, 
etc.), bombard a heavy ice or heavy paraffin target. Protons are produced at the same tune by the 
reaction Hs(H’,p)H’, with approximately as many protons produced as neutrons. The H2(H2,n) 

reaction being exothermic with Q %+3.2 Mev. accounts for fairly good yields at relatively low 

energies, Figure 3, since it is only necessary for the incident deuteron ro penetrate the CouIomb 
barrier of the target deuteron, no extra energy for excitation being needed. Although the reaction has 

considerable advantage in yielding a reasonable number of monoenergetic neutrons for relatively 
low energies the practical impossibility of designing a suitable target limits the use of the reaction 

as a neutron source. (It must be remembered that practically all the deuterons are not successful .L_ 
in producing neutrons but, rather, generate heat in the target.) 

x/’ R 

10 - ,sf=’ 
d’ 

o* i I 043 ; I 1 I- * I I , 
0 loo 200 300 400 500 600 

DEUTERON ENERGY (kev) 

Figure 3 
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Another reaction .using protons on lithium gives monoenergetic neutrons down to rather low 
energies. The reaction is Liv(H’,n)Be’ with a Q-value of -1.62 Mev. Similar to the example dis- 
cussed in Section I.1 the threshold is greater than Q, being in this case B/7 of 1.62 Mev or 1.85 
Mev. If the lithium target is bombarded with protons of threshold energy the neutrons come off with 
finite energy, about 30 kev, for then they move with the speed of the center of gravity. If the proton 
energy is increased then there will be sufficient energy to give the neutrons a velocity with respect 
to the center of grauity. The net velocity is calculated by vector addition of the velocity of 
the center of gravity and rhe neutron velocity relative to the center of gravity, so that for high enough 
energies, neutrons can have resultant velocities of zero or even backward velocities. For a given 
proton energy, the energy of the neutrons will vary with the angle between the incident proton beam 
and the resultant neutron direction, that is for each angle of emergence of neutrons there will be a 
corresponding neutron energy. This wil1 be discussed.in greater detail in a Iater chapter. 

Perhaps the most common neutron source is the%yclotron source” in which deuterons bombard 
a beryllium target. In the reaction, Be’(H’,n)B lo, the target is stable and can be made to dissipate 
the heat generated in the “non-successful” collisions. For a thick target 1 Mev deuterons give 
about 10s neutrons/sec/microamp; 8 l ev deuterons give 10” neutrons/sec/microamp. 

PROBLEMS 

1. In the calculation of Q for the reaction of equation (1-I) explain why you can use atomic 
masses for such calculations, when it is true that nuclear masses alone are involved in the reaction. 

2. Prove that one mass unit equals 931 Mev. Convert from mass units to grams; then, using 
E = mc’, convert grams to ergs to Mev. 

3. Given a hoIlow sphere of beryIIium, inside radius 1 cm, outside radius 3 cm. A one gram 
capsule of radium is placed at the center of the sphere. Neglecting the absorption of the gamma 
radiation what is the approximate strength of this (7,“) source? If one curie of Naz4 were used in 
place of the radium, what would be the source strength? 

4. How many neutrons per second would one expect from a heavy hydrogen target bombarded by 
one milliampere of 500-kilovolt deuterons? 

,. . 

a-93-y; . 
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CHAPTER II 

COLLISIONSOF NFUTRONS WITHNUCLEI 

2.1 GENERAL. TYPES OF REACTIONS 

One of the most inportant types of collision, processes is the *‘scattering*’ process. A 

scattering process is characterized by the ide,ntiy of one of the ejected particles with the incident ’ 
particle. If a neutron collides with a target nucleus (in a later chapter we shall define in detail 
what constitutes a *‘collision”) and after the collision a neutron is observed leaving the scene, 
then it may be said that the neutron has been scar&red by the target nucleus. lf the kinetic energy 
of the aeutron before the collision is equal co the sum of the kinetic energies of the recoil nucleus 
and scattered neutron after such a collision then the process is called “elastic scattering.” It 
the kinetic energy is not conserved; i.e., some energy goes into nucleat excitation, then the process 
is ‘*inelastic scattering.” Using the customary notation (seeequation l-l), these definitions may 
be summarized as follows: 

Scattering process: A (n&A* 

Elastic scattering: Aad* 

Inelastic scattering: A* 3L excited state’of A 

-(A- r tar@ nucleus; A,’ = recoil nucleus) 

For simplicity scattering processes are. generaIly.referred to as (n,n) processes. 
-? .:%.b* 

(2-1) 

In addition to the s&tteriug&cess; collisions of neutrons with nuclei may result in the 

ejection of other particles or radiati~on, for exampIe,(n,~, (n,p), or (n,a) reactions. The distinction 
between excited or stable resultant nucleus is not generally made. 

There are other types of reactions ocurring when neutrons collide with nuclei the most impor- 

tant of which are the (n,2n) and (n, fission) reactions. In the (n,2n) reaction a neutron incident on 
a nucleus results in the ejection of two neutrons, the recoil nucleus being isotopic with the target. 
nucleus. This reaction is always endothermic. The (n, fission) or (n,f) reaction will be discussed 
at length in a later chapter. ln the (n,f) reaction a neutron collides with a nucleus and as a result 
fission occurs. 

2.2 NEUTRON CROSS SECTIONS A,s A FUNCTION OF ENERGY 

The collision of neutrons with nuclei may be described in terms of the target presented by 
the nuclei to the incident neutrons. Target size is specified by “cross section’* or so many square 
centimeters per atom. lt has become the custom to express cross sections in “barns” with one 
barn defined as 10 -s4 cm’/atom. If a beam of neutrons of density n neutrons per cubic centimeter 
alI moving with a velocity v centimeters per ‘second is incident on a nucleat target of area(r(cross 
section), then the number of neutrons hitting the target per second will be nvu. This can be 

visualized by considering the target area ,7 to move with a velocity v through the neutron beam. In 
its motion the target will *‘sweep” out per second a volume vc in which there will be nvu neutrons, 
since there are n neutrons per unit volume. 
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While this representation is convenient it must be understood that the nucleus is not an area 

in the usual geometrical sense. Among other things the area is dependent on the energy of the 
incident particles. For neutrons this dependence may be understood qualitatively by considering 
the variation of the de Broglie wavelength of neutrons with energy. The fundamental relationship 
between the wavelength X of a particle and its momentum p is X= h/p where h is Planck’s constant. 
In terms of neutron energy this becomes: 

E = mv2/2 = (mv)z/(2m) = p 2/2m or p = L?? 

(2-2) 
Thus x = h/p = h/m for v<<c 

The condition that v must be less than c, the velocity of light, is necessary since the non- 
relativistic expression for the kinetic energy has been used. (This limitation is negligible since 
the rest mass of the neutron is 931 Mev.) Expressing the neutron energy E in electron-volts and 

SU~S~i~~@z$~~ = 6.61 x 10 +’ erg-sec., m = I.675 X 1O’24 gm, 1 electron-volt = I.601 X 10-l* erg 
in the e*Wbn (2-2) yields the following convenient relation: 

I x 0.286 
= -X lO*cm 

& 
(E in electron-volts) (2-3) 

Now, the di&tance between atoms in a solid is of the order of 3 or 4 Angstroms, that is * 3 X IO* 
cm. Putting numerical values into equation (2-3) shows that neutrons of about 0.01 ev have a 

characteristic wavelength of approximately interatomic dimensions, or very many times larger than 
any nuclear dimensions. To have a wavelength equal to the nuclear diameter of a medium weight 
nucleus, say lo-‘* cm, the neutron energy would have to be about 10 Mev. 

Now, a nucleus of diameter 10 ‘%m, the diameter being defined as twice the range of nuclear 

forces, will have a “geometrical” cross section of about IO”4 cm2 or 1 barn. If the neutron were 
a point particle then it would be reasonable to anticipate that all cross sections should be of the 
order of barns. However, as shown in equation (2-3) if the neutron behaves in a manner consistent 

with the fundamental basis of wave mechanics then a neutron only can be considered a “point” particle 
with respect to the nucleus when its wavelength is at least less than nuclear dimensions. This 
latter will be true only for fast neutrons, that is, with energies at least greater than 1 Mev. For 
slower neutrons the wavelength increases so that for thermal neutrons of l/40 ev energy X is 
about 2 x IO”* cm. In this case it is the nucleu$ which is the “point” particle relative to the 
neutron so that the neutron size might be expected to determine the cross section. Thus (T should 
be of the order of Aa for slow neutrons. For thermal neutrons one might expect cross sections as 

large as 10-l” cma or IO* times the fast neutron cross sections. Actually more rigorous theoretical 
analysis shows that p is an outside figure and that o<J?. 

The foregoing discussion is intended to present one argument showing that it is not possible 
to assign a unique geometrical cross section to a nucleus valid for all energies of incident neutrons, 
since in the range of energies generally considered in practical cases, say from 10-a to lo7 
electron-volts, the neutron’s “size” varies from IO-* to IO-la cm. Factors other than neutron size 
will be found to affect the cross section; these will be discussed in a later chapter. 

In keeping with the idea that the cross section is not a strictly geometrical quantity the re- 
lation stated in the first paragraph of this section should be solved for cr: 

Processes per nucleus per unit time 
tr= (2-4 

nv 

a = neutrons per unit volume in incident beam 

v = neutron velocity 
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The quantity nv is usually called the “neutron flux” since it is the number of neutrons incident 
per unit area per unit time on the target. Values of o will obey the approximate inequality 

30 
-24 cm” $ o- <x= G-5) 

where the de Braglie wavelength X of the neutron is defined in equations (2-2) and (2-3). 

2.3 MEASUREMENT OF TOTAL CROSS SECTIONS 

The ‘*total” cross section of a given material for incident neutrons is determined by measuring 
the neutron transmission of a known sample of the material. A source emits neutrons so that a beam 
of intensity I, (aeutrons/sec/cm*) is incident on the sample, see Figure 4. As a result of scattering 

and absorption processes in passing through the material the neutron intensity is reduced to I. 
The detectot response with the sample “in” the beam and “out” of the beam are measured so that 
I and I,, respectively, can be determined. 

The geometrical arrangement must be such that any scattered neutron will not be detected. 
This means that the solid angle of tbe absorber at the source and at the detector must be very small. 
The broken line in Figure 4 shows how a scattered neutron might be detected if the neutron beam 
were not properly collimated. By defining the beam (i.e., making incident and transmitted beams 

parallel) with suitable apertures the geometrical conditions mentioned can be met. In addition to 
these geometrical conditions it is also necessary that any multiple scattering process in which a 
scattered neutron could be rescattered back into the beam hasp a negligible probability. This cannot 
always be satisfied for ‘%hick” samples in which scattering predominates over absorption. (In 
the discussion of neutron diffusion and slowing-down, in a Later chapter, it will be obvious that the 
exponential law to be derived herewith will not be valid.) 

/COLLIMATOR ( SCHEMATIC 1 
+ 

NEUTRON 

SOURCE r, c,H 
Ad 

*’ 

NEUTRON 

OETEGTOR 

l r, 

SAMPLE 

Figure 4. General arrangement for neutron transmission experiment (total cross section 
measurement). 



AECD - 2664 13 

2.4 THE GENERAL FEATURES OF COLLISIONS * 

In any collision process the “initial state” consists of a particle incident on a target nucleus 
sad the “final state” consists of an ejected particle and the recoil nucleus. For a given energy 
of the initial state there ate a number of possible energies of the ejected particle as well as a 
number of possible energies of the recoil nucleus, provided these energies are consistent with 
energy conservation. 

If the magnitude of the momentum of the ejected particle and its direction of motion are fixed, 
then momentum conservation fixes the momentum of the recoil and thereby the recoil’s kinetic 
energy. The conservation of energy law then fixes the state of excitation of the recoil nucleus. 
Thus specifying the momentum (magnitude a&d direction) of the ejected particle specifies the final 

state completely. 

Suppose the ejected particle has an energy E. Thea what is the probability that a transition 

between initial and final states will occur? Assuming such transitions obey the general laws of 
quantum mechanics, it can be shown that the probability that a transition will occur in which the 
energy of the ejected particle is between E and E + dE can be written as a product Mp where 
M = /l-I lVa”and p(E) is the density of possible final states in the neighborhood of E. H is a 
matrix element which will be discussed qualitatively herewith and in a later chapter,* is Planck’s 
constant divided by 2% 

The density function can be derived from statistical mechanics considerations. In a number 
of instances the variation of this factor will be found to be more effective than tbe variation of M. 
Using a familiar technique in quantum mechanics, the ejected particle is imagined to be in large 
box of volume n. This volume will be infinite in any practical case. The number of states of the 
ejected particle which will have an energy E in this box is proportional to the volume in phase 
space corresponding to this energy. With Cartesian coordinates where h is the linear dimension of 
a cell in phase space (a cell can contain one state), then the number of states for which x is be- 

tween x and x + dx, y between y and y + dy, etc. and p, is between p, and p, + dp,, p, between 

P and P + dp,, etc. is just dx dy dz dp, dp 
&y,z,) &luces this to R dp 

dp /ha. Integrating over configuration space 
dp dp /ha or &!/h&) times the momentum volume element. It is 

apparent then that the aumbef of ‘,tat& for which the to&al momentum p = /p p t p s + p s is 
between p aad p t dp is just R/h* times the volume element between p and pEt dp. %his v&me 
element, a spherical shell in momentum space, is 4np’dp. Thus 

Number of states with momentum between p and p t dp 

= dN = (Q/hs) 477p2dp 
(29) 

The density of states per unit energy range, AE), can now be calculated from (2-9) by changing 
from momentum to energy variables. For particles (4 p, n, etc.) E = mvs/2 = ps/2m so that dE = 

P dp/m t v dp. For photons E = hv = hc/Xor since X = h/p this means E = pc or dE = c dp. 
(In both cases dE/dp is the particle or photon velocity.) Substituting these into (29): 

Number of states per unit energy interval with energy 

between E and E t dE 

dN 47-a p= 
P(E) =dE = hr.r 

(2-10) 

where p&/v = msv for particles 

= h”va/c a for photons 

*In all of the discusston it Is assumed that the ejected particle is in its *&round state,- i.e., 
110 t exe1 ted. 
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Qt = TOTAL NEUTfkON 
CROSS-SECTION 

/-SAMPLE 
(N ATOMS/CC 1 

Figure 5. Exponential absorption law. 

It is apparent that in the absorber (Figure 5) a layer of thickness Ax has a parallel beam of 
I neutrons/sec/cmg incident on it. If N is the number of absorber atoms per cubic centimeter then 
N Ax nuclei per square centimeter are presented as *‘targets ” for the incident neutron beam. From 

equation (Z-4) it is apparent that the number of processes which will occur per unit area per unit 
time is 0% nr times the number of nuclei per unit area N Ax. Since nv is just the incident neutron 

flux I this means that 

Number of neutron collisions per unit area per unit time in layer Ax = ct I N Ax (2-6) 

where crt 3: ~,~t~r = cross section for all collision processes 

Now, any collision removes the neutron from ,&e parallel beam so the above is just -AI, the 
decrease in beam intensity. Equating and solving yields the familiar exponential law: 

-AI -a,fNa, 

-AI/I = NC+ (2-7) 

I = IOe-Nata (integrating) 

or ut = 
~ogo(‘I,/I) 

Na 

where 1. is the kid I : beam intensity (at x = 0) and a is the thickness of the sample. The last 

equation expresses the total cross section in terms of experimentally measurable qusntities. The 
total cross section a, may be defined as 

fft = 0 +(r 
elastic inalas tfe + *.bsorption (2-8) 

where a 
l beotptloa 

includes all processes in which a neutron disappears, i.e., (n,fi (n, a), (n, p,), etc. 
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The occurence of f) in p(E) shows that as the volume, in which the ejected particle is confined, 
is allowed tc become infinitely large the density of states. becomes infinite or the particle can be 
ejected with any energy (i.e., a continuum of possible energy states). The transition probability 
does not become infinite, however, for the matrix elements contain n in such a way that M is pro- 
portional to a-‘. Thus the probability of a transition to a state where the ejected particle. or photon 
has a momentum p, (subscript for ejected or outgoing particle after the collision) is proportional 

told * pe2/ve. Then for a single incident particle with velocity vi colliding with a single nucleus 
it follows from equation (2-4) that the probability of a collisioa (per unit time) is VP where o- is 
the cross section for incident particles of velocity vi to result in outgoing psrticles of velocity 
va. Equating the probabilities and incorporating the various constants into M we obtain an equation 

for the cross section: 

I P2 1 
cramA .vL?i- (2-11) 

0 i 
Equation (2-11) is too general for one to understand fully its significance. Let us apply the 

result to several specific situations: 

Elastic Scattering 

In an elastic scattering collision initial and final velocities are equal, i.e., vi = ve. 
Substituting this into (2-11) reduces the cross section to 

This means the cross section is proportional to M’ . For slow neutrons, where the energy 

range is small, the elastic scattering cross section will not depend appreciably on the 
neutron energy. It should be pointed out that for elastic scattering from nuclei of small 
mass number initial and final velocities are equal only in the center of gravity system and 
that it is in this system that the foregoing derivation is true. 

Absorption Processes 

Suppose the recoil is heavy so that the ejected (small mass) particle has almost all the 

kinetic energy in the final state. The situation is shown in Figure 6. A neutron of mass 
m, velocity vi hits the target nucleus, is absorbed and a new light (small mass) particle 
is ejected with mass m ’ and velocity v.. Conservation of energy requires that the kinetic 

energy of the ejected particle must be equal to the kinetic energy of the incident neutron 
plus whatever energy Q is available from the nuclear reaction: 

m’ve2/2 = mpi2/2 t Q 

or h2 = (m’)’ [ (m/m’)vc + (2/m’ >Ql 

Noting that p,“/v, t m ’ p, and substituting in (2-11) gives the following expression for 

the cross section: 

CT = M’(m ) ’ ’ 1 [(m/m’)vie + (2/m’)Q] rfa 
I 

mea Q is positive (exothemic reaction) and vi is small the cross section is proportional 

to l/v*- the so-called I/v law. A negative Q and a very small vidoes not make physical 
sense, giving sn imaginary cross.section and showing that the formula does not cover the 
case. cr should be xero for .such a situation. 
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Figure 6. Absorption process. 

Inelastic Scattering 

Consider a neutron of mass m Incident on a nucleus of mass M. If the target nucleus is 
not considered to be very heavy compared to the neutron then all variables should be 
referred to the center of gravity system. In this case the neutron mass must be repiaced 
by its “reduced mass” fi = mM/(m t M). (For M/m >> 1 this reduces to m so that 
center of gravity and laboratory systems are approximately the same.) Suppose the 
first excitation level of the target nucleus is at an energy W above the ground state. 
Then if the neutron has a kinetic energy ~.~v,~//z< W (center of gravity system) no inelastic 
scattering can take place. But if pvis/2> W and the nucleus is excited to this level, 

the kinetic energy of the outgoing neutron after the collision will be 

(pv,%) = (/x92) - w 

so that the cross section becomes 

writing W as pv O/2 with v,, the threshoId velocity for excitation of the nucleus to the 
energy W makes ?t easier to see how the cross section might be expected to behave neat 
the threshold. 

CT = M’p2 (1 - (v&’ 

4.4 
= M’ P’ J(v, + Q/Vi J<v, ‘VO)/VI 

For(v - v )/ v < < 1 (near the threshold) the cross section is approximately M ’ /.~s 
/‘-showing that nesr the threshold the cross section increases from xero 
as the square root of the excess velocity, provided hi’ csn be considered constant. Since 
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the cross section is propottional to v the velocity of the neutron after inelastic scattering 
it follows that this velocity should licewise increase in proportion to the square root of 
the excess velocity near the threshold. This is illustrated in figure 7. 

t 

& 
i 

PARABOLIC 

THRESHOLD / 

v. = v 
I 0 

Figure 7. Inelastic scattering of neutrons (vi 

scattered neutron velocity). 

s incident neutron velocity, v = e 
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The ejected particle is a photon so that instead of ps/v the quantity h8fl/ca must be 

considered, see equation (2-10). If the neutron hits a nucleus and is captured there is 
generally an excess of energy - that energy associated with the binding of the neutron 
to the nucleus. Neutron capture is almost always exothermic, one notable exception 
being helium, The energy available for photon emission wil1 be pvi2/2 t W where W 

is the binding energy of the neutron. If the first photon corresponds to a drop to a 

level L (not necessarily ground) then it will have an energy hu = pvr*/2 + W . Now 
as vi approaches zero the quantity hv approaches a fixed number W, so that hkv/c’ 
becomes constant. The other factor in the cross section is l/vi which increases 
rapidly. As a consequence (n, ,y) processes should have cross sections which increase 
as l/v for siow neutrons (v * 0), provided M’ itself is constant. 

(n, a) Processes 

These reactions, in which the capture of a neutron results in the em&sip0 of an alpha 

particle, can be endothermic or exothermic (Q positive or negative). As in the previous 
example of an absorption process the energy equation in the center of gravity system is 

with ~1, the reduced mass of the ejected alpha particle and pi the reduced mass of the 

incident neutron. If Q is positive then v,’ is at least (2Q/p,) SO that the cross section 
which from equation (2-U) is M’,u,b,/vI is going to obey the l/v,law, at Ieast for 
small vi’ Thus slow neutrons in an (n,@ process for which Q > 0 should be absorbed 
according to a l/v law. However, for Q< 0 the situation is different. Denoting the thres- 
hold energy by Q = -F ,~~a/2 the energy equation can be reduced to (p./pJve8 = 

<vi’ - voa) with v. the threshold velocity. As discussed in the inlastic scattering 

process the velocity of the emitted alphas should increase in proportion to the square 
root of the excess velocity at the threshold, Figure 7. Actually, see Figure 8, the 
rise in u is not parabolic. This is due to the muiation of M ’ in this case. Being a 
charged particle the alpha has to escape through an electrostatic potential barrier 
(“Gamow” barrier). This effectively decreases the cross section as shown in the figure. 

. 
2.5 EXAMPLES FROM EXPERIMENT 

The absorption of neuaons by boron in the reaction B’* (n, a9 Li’ iRustrates the 
type process discussed at the end qf the preceding section. Q is positive, about 3 
Mev (although since Li’ is normally left in an excited state only about 2.5 Mer are available for 

kinetic energy). For slow neutrons this reaction should go as l/v. Experiment confirms this. In 
unseparated boron (B lo and B 11) the cross section has been measured over a wide range of 

energies with the results shown in Figure 9. For room temperature neutrons the tots1 cross section 
is 737 htns; since this temperature* (15%) corresponds to a neutron velocity of 2200 m/set the 

cross section is thus 737 X 2240/V = 1.62 X lOs/v in barns (v in meters per second). For pure 
B1* the room temperature cross sectjon is 3525 barns. This high crosssection and the ionizing 

ability of both products (He4 and Li’) aswell as the fact that futtctional dependence of cr on 
neutron energy E is rekivdy simpfe (C 5: 116/fifor u in barns E in ev) make boron extremely 

useful in neutron detectors, particularly in the form of the gas BFs. If boron &fluoride is prepared 
with boron enriched in the isotope B lo the detector sensitivity for slow neutrons can be inaeased, 
as is apparent from the aoss section values, by as much as a factor of five. 

a-- $1 
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Figure 8. (n, (5) process with Q negative. Observed (T not same shape as v/v1 at 

threshold showing M ’ variation. 

I I lilllll I I 111II1I I I 1 11111 I I 1 I I IllI I I Ill 
-01 0.1 1.0 10 ‘loo -rob0 

E (ev)+ 

Figure 9. Boron. Tota neutron cross section vs. neutron energy. 
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It is well to keep in mind that the l/v law holds for relatCue velocities. That is, when the 
neutron velocities become small (comparable to thermal velocities) the thermal agitation of the 
target nuclei must be considered in the application of the I/V law. Suppose neutrons are incident 
upon some material in which u is proportional to l/v-, where the subscripts have been added 
to indicate that it is the relative velocity of neutron to target nucleus which counts. Suppose 
further that a fraction N, of all the target atoms are moving with an absolute velocity u relative 
to some fixed laboratory frame of reference. Since (T is proportional to I/v~ and the number of 
“meetings” per second is proportional to N, l V* then the capture probability is A - N,, with A 

aeonstant. Summing over all possible target atom velocities z A * N, = A * N shows that the 
total capture probability is a constant. II 

Thus, the number of captures per unit tire is a constant and independent of the 
relative velocities between neutron and target atoss whenever the cvoss section %S 

proportiona to l/v. This independence of relative velocities can also be seen by inspection 
of equation (Z-4). 

One of the early fundamental experiments (Physica 2 Review 49:777 (1936)) was based on 
this principle. In the experiment the transmission of a rotating boron covered disk, on which a 
beam of neutrons was directed (axis of neutron beam inclined with reqect to axis of disk rotation), 
was measured. The l/v law was verified by observing no change in transmission with variation 
of rotational speed. The transmission by substances not obeying the I/V Iaw, e.g., cadmium, was 
found to vary as the rotation was changed. 

The lighter isotope of lithium reacts with neutrons according to the scheme Li*(n,a)Ha with 
a Q of +4.5 Mev. As anticipated in the previous section, neutron absorption is according to the 
l/v law, at Ieast up to about 0.1 ev. This is shown in Figure 10. It may be said in general that 
the l/v law holds to higher energies for light nuclei, where the energy levels are spaced far apart, 
than for heavy nuclei where the energy 1eveIs are close packed and the factor M’ varies sharply. 
This will be discussed in some detail in Chapter Iv. 

0.1 1.0 

E(ev) F 

Figure 10. Lithium. Total neutron cross section vs. neutron energy. 
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Absorption of neutrons by nitrogen, N”(n,p)C’*, occurs with the relatively low Q value of 
0.6 hfev. This is similar to the case discussed at the end of section 2.5. The l/v law does not 
hold, being overshadowed by the effect of the Gamow factor. In fact, the cross section is reduced 
to only a few barns for room temperature neutrons. 

Neutron cross sections have been summarized in an article by H. H. Goldsmith, H. W. Ibser, 

and B. T. Feld in the Reviews of Modern PhysCcs 19:259 (1947). They represent part of the in- 
creasing body of data of %eutron .spectroscopy-” 
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PROBLEMS 

mm-s64 

1. A copper plate 1 cm thick reduces the intensity of a colhmted beam of thermal neutrons 
by a factor 0.36. What is cvt (for thermal neutrons) in barns for copper? What thickness of copper 
would reduce the intensity by a factor of 0.51 

- 

2. From the literature find an example of each of the processes: (n,n),taStis, (n,a)ia.l~StSr, 

(n, 9, (n, a), (n, p). Record the cross section obsetved in each example, 

3. what is the reduction in intensity of a beam of one electron-volt neutrons passing through 

a 5b n&cm’ layer of boron? 

4. me **average’* distance a neutron goes before being absorbed in a substance whose 

absorption cross section is U. is just l/No. (N e target atoms/cc). 0n this basis what is the 

average life of a ‘*room temperature” neutron in lithium? (Assume that CT * = obDt.) What is the 

average life in BF, at standard conditions? 
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STABLE ISOTOPE CHhRT AND REACTIONS INVO&VlNG NEUTRONS 

3.1 THE SEGRE ISOTOPE CHART 

Before considering in further detail the nature of neutma reactions it will be valuable to 
review the essential features of stable isotopes and what these features imply about nuclear 
reactions involving neutrons. 

A convenient way to summarize data on the.vatious nuclear species is by means of the 
Segre Isotope Chatt. In this chatt the number of neutrons (N) is plotted on the vet&al axis, 
the number of protons (Z) on the horizontal axis. Identity and properties of stable and unstable 
isotopes are labeled in each square corresponding to the observed (Z,N) dues. Since the 
resulting chart would have the general shape shown in Figute 12 and thereby be inconveniently 
large (most of the chart would be blank space), the chart is usually broken into sections and 
the sections arranged in a somewhat interlocking pattern. Isotopes (constant Z) appear in the 
same vertical column, isobars (constant Z + N) on the same diagonal, and isotones (constant N) 
in the same horizontal ro%v. 

The stable isotopes lie in a narrow region on the (Z + N) graph as shown in Figure 12. 

For light elements this region is centered around the N = 2 line; for heavier elements the 
region deviates toward higher numbers of neutrons so that for uranium the most stable isotope 
hasN-Z=146-92=54. 

0 

DO NOT BIND 

DO NOT BIND 

Figure 12. Region of Stable Isotopes 
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KEY TO SEGRE CHART (AECD 2111) 

Element mass number Class. type tadiation 
Per cent abundance 
Mass 
Slow newton capture 
Magnetic moment, spin 

Half-life- - 
Mass 
Emitted radiations, 

energy in Mev 

STABLE RADIOACTIVE 

Classification: Type Radiation: 

A Isotope cettain (A and 2 cettain) 
B Isotope probable, element certain 
C One of few isotopes, element certain 
D Element certain 
E Element probable 
F Insufficient evidence 

p Negative beta panicle 
p’ Positive beta panicle 
y Gamma my 
e- Internal convetsion electron 
K Electron captute 
IT Isomeaic aansition 
D Slow neutmn cap- ctoss section in barns 

Figure 13. Segre chart near A12’. 
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To illustrate the convenience of this representation and to show what data concerning 
neutron reactions can be obtained from the chart the part of the diagram near aluminum is 
reproduced in Figure 13. In the figure the single isotope of aluminum, A12’, is outlined with 
heavy lines and the products of (0.33, (n,p), (n,a) and(n&)react on Al27 indicated with 
auxiliary symbols. It turns out that all these reactions lead to unstable end products. Except 
for the product of the (n,2n) reaction these are all beta emitters.This is understandable, for 
example, in the case of the (n,p) reaction where when stability is finally achieved the net effect 
is the transformation of a neutron into a proton and an electron: 

AlUa7+n-Mg2’+k1 

Mg2’ 4 A12’+p’- 
(3-l) 

The net effect can be written as n +p + p. Conversely, there exist (,o,n) reactions for which 
the net result is p+ n + a’. As the neutron mass is greater than that of proton plus electron 
the transformation of a neutron is exothermic. The converse &action is endothermic. 

The (n,2n) reaction, not generally as common as the other three, amounts to the extraction 

of a neutron thereby producing a positroo emitter and ultimat%ly stable Mg’“. This latter 
illustrates the principle that unstable nuclei above the curve of maximum stability ate generally 
beta emitters, those below positron emitters (or K-electron “capturers”). Any one of these 
processes - beta or positron emission or K-capture - produces an isobar of the unstabie nucleus 
so that the processes are along isobaric lines of slope = -1 on the SegreChatt as indicated in 

Figure 12. 

If aluminum is bombarded by neutrons of assorted energies, all the products may appear and 

some sort of chemical separation would be used to separate the activities. If the energy of the 
bombarding neutrons is controlable, it might be possible to favor the formation of one product 
over the others by using neutrons of appropriate energy. In any case isolation of any one of the 
beta-emitting products and examination of the energy spectrwn of the emitted beta particles 
would reveal that the spectrum is continuous with the general shape shown in Figure 14. This 
is a somewhat unexpected result inasmuch as gamma emission (and alpha emission of the 
naturally radioactive nuclei) yields discrete spectra. The accepted explanation of this anomaly 
is that the emission of a beta particle is always accompanied by the emission of a ‘neutrino.” 
Thus the decay of Mg2’ can be written as: 

Mg”+ Al2’ + /5- + V (U = neutrino) 

The energy balance is EF + Et, = E with E, the energy of fi- decay and equal to the maximum 
Oil 

of the observed beta energy. For Mg this is I.8 Mev. Since the energy E, CM be divided 
between the beta and the neutrino, it follows that there should be a continuous energy spectrum 
for the beta particles. 

Before such a scheme is acceptable it is necessary to show that the maximum beta energy 
(E,), and not, say, the average beta energy, is the energy lost per nucleus on beta decay. This 

can be readily shown in many instances. For example, consider the decay of Mg” and the pro- 
duction of Mg “: 

Mg27-+AlP’ tF+u+E, 

Al 27 +n +Mg 27+H1tQ 
(3-2) 

Adding: n - w+v+H’) =E, +Q 

Now the energy equivalence of the mass difference between neutron and hydrogen atom (proton 
plus electron) assuming neutrino mass to be negligible is 0.75 Mev so that E, * Q should be 
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Figure 14. Typical Beta Spectrum, 

0.75 Mev. Since E, is 1.8 Mev it follows that Q must be -1.05 for consistency. This is 

observed experimentally, for the reaction Al a’ (n,p) Mgso is found to be endothermic with 
a threshold corresponding to Q = -1.05 Mev. If the observed Q were, say, -1.2 Mev this 
would imply that the energy given out upon beta-decay exceeds the maximum of the beta 
spectrum. In this case to satisfy energy conservation the neutrino mass would have to be 
assumed non-negligible. 

Positron emission is similar in all respects. As with beta emitters the total energy of 

the reaction must be taken equal to the maximum energy of the emitted particle. Observed 
spectra and reaction energies are quantitively consistent provided a neutral particle of 
negligible mass (i.e ., mass small compared to electronic mass) is assumed to accompany 
the emission of a positron. 

3.2 IS0T0PIC WEIGHTS AND THE BINDING ENERGY OF NEUTRONS 

In an (n,% reaction a neutron is captured by a nucleus and the excess energy emitted 

as gamma radiation. The energy balance of the reaction leads to a quantitive measure of 
the binding energy of the neutron to the target nucleus. A rough idea of the magnitude of 
this energy may be obtained by assuming that the addition of a neutron to a nucleus of mass 
number A increases its mass number to A + 1 and its mass by one unit. Since the neutron 
mass is, in round numbers, 1.009 mass units this would indicate a binding energy of about 
.009 mass units or 8 Mev. Actually the true atomic weight differs appreciably from the mass 
number A in many cases. It has, in fact, been found convenient to defiae the fractional 
deviation as the “packing fraction”: 

f(A) = (M-A)/A 

M = atomic weight (a function of A) 

A = mass number 

(3-3) 
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Figure 15. Packing Fraction. 

The packing fraction can be determined from mass spectrometric data, solid curve of Figure 15. 
It can be seen that the packing fraction is slowly varying over all the stable nuclei except the 
very light ones. 

It is possible to use the observed packing fraction curve to determine any regular variation 

of the binding energy with atomic number. Solving .equation (3-3) for M(A) and writing the corre- 
sponding equation for M(A + l), the atomic weight when A is increased by one yields: 

M(A) = A [l + f(A)] 

M(A+l)=(A+l) [l+f(A+1)1 (3-4) 
& =M(A+l)-M(A)=l+(A+l)f(A+l)-Af(A) 

The & is the increase in atomic mass if one neutron (or proton) is added. Subtracting this from 

the average mass of neutron and proton, 1.0085, gives the binding energy of the added particle: 

1.0085 -&U = .0085 - [(A + 1) f (A + 1) - Af(A)l 

= .0085 - $ &A)] 

Writing the difference as a derivative makes it possible to estimate the binding energy by 

observing the slope of the function Af(A). The broken line in Figure 15 shows how Af(A) varies 
with A. Where Af(A) has a zero slope the binding energy of a neutron (or proton) is .0085 mass 
units or 8 Mev; where the slope is negative the binding energy is greater than 8 Mev, where 

‘positive it is less than 8 Mev. The minimum occurs near A = 100. 
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What this means in so far as neutron reactions are concerned is that (n, ti reactions will 
involve energies of the order of 8 Mev. The only stable isotopes which will not bind a neutron 

are He4 and the neutron itself. Of course, any unstable isotope with excess neutrons will not 
bind a neutron. In fact, referring to Figue 12, the region above the beta emitters might be 
described as *‘these nuclei will not bind neutrons” and that region below positron emitters as 
“these nuclei will not bind protons. ” Examples of nuclei in the upper region, that is, neutron 
emitters, are found among the nuclei formed as the result of fission. 

It should be pointed out that this 8 Mev rule for (n,3 reactions is just a rough average and 

that, particularly for light elements, the value may differ from this average. Fot example, the 
opposite process or (y,n) reaction occurs in the case of deuterium (see Chapter I) at a threshold 
of 2.2 Mev and in the case of beryllium at 1.7 Mev, showing that the neutron binding energies 
can differ considerably from 8 Mev. 

PROBLEMS 

1. Find five examples of each of (n,*, (n,p), (n,oJ and (n,2n) processes. Record the half- 

lives of any radioactive product nuclei; 

2. Calculate the binding energy of a neutron to each of the following nuclei: 
Li’, Be’, B ‘3 B “, C ‘3 C la. 

H1, Ha, Lie, 

3. Calculate &e packing fraction and average binding energy of a neutron (or proton) in 

the neighborhood of iron. 

4. Write the equation for the transformation of a proton into a neutron (plus other particles). 
#at is the Q value? 
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CHAPTER IV 

MODELSOFNUCLEIANDOFNUCLEAR REACTIONS 

4.1 THE COMPOUND NUCLEUS 

In section 2.4 it was shown that for (o,% processes the cross section for low energies is: 

~=M”(h2zra/cs)’ (4-l) 
yl 

where u = frequency of emitted gamma, vi = velocity of incident neutron.. ,Of the more than one 

hundred (n,% reactions known the l/v law holds for most only very close to Vi r 0. This is 
due to the sharp variations of M ‘associated with resonance phenomena. 

An explanation of the nature of these resonances can be made in terms of the so-called 
“compound nucleus” modelof reactions first proposed by Niels Bohr in Nature: U7: 344(1936). 
In this model a nuclear reaction is a three-step scheme: 

( yzuJ+ (;yJ;) +$;gq -+ Geus) t ( ;s$y t4-*) 

This means that when a neutron hits a nucleus it does not knock out the first particle it hits. 

Instead it distributes its energy among the various members of thenucleus and for some time 
exists in combination wirh the original nucleus in a system called the compound nucleus.* 
Whether a particle is emitted by the compound nucleus depends upon the probability of cooceo- 

trating the necessaty escape energy on one particle in the course of the many-body interactions 
within the compound nucleus. An (o,N process may be represented as: 

A +N’(A +n)* *(A +n) +hv (43) 

The compound nucleus (A + n)* is in, this instance the excited state of the final nucleus, the 

asterisk being used to denote excitation. 

The compound nucleus is relatively stable, that is to say the compound nucleus exists 
for a time long compared to the time it would take a nuclear particle to cross the nucleus. 

This latter time is of the order of 10”’ cm divided by the neutron velocity (see Figure 11, 

page 21), or for slow neutrons about 10”s/lO’ = 10”’ second. The time of existence can 
be inferred from the uncertainty principle which states that the product of the energy 
uncertainty in a system (AE) and the time uncertainty (At), in this case the time during 
which the system can be said to exist, is of the order of Planck’s constant: 

.q 
AE*At-h (4-4) 

It is possible to determine the magnitude of the energy uncertainty to be discussed later, so 

that & can be inferred. Sometimes At is of the order of lo-l4 second or 10’ times the crossing 
time. In terms of the physical picture this means that the incident particle hits the nucleus, 
distributes its energy among the nuclear particles, and very many %ansit times” later the 
necessary energy is concentrated in a constituent particle so that it can escape. 

* The distribution ofencrg uon~allsuclear partlclea arises front the fact that thenuclear 
particles interact with forces comparable to the force axertedmpom am, muolear partiala w the incident 
8eutron. Tbieis differemtfrom the cassinrtomie colli~ioms whem, ..,, am electrabits rsatos.In this 
latter ease tbeimte?aetiombetweem the collidim~eleot~em and tbe eleOtW bein~j stmckielar6e Compared 
to tJ~e:nteractiombet~weem thest~ekelectrmamd theoU~etelectroaeef t&e atom.Plltanotbrrwy, 
aolli~ioasbetesagnslltroo~ amdauctcimustbi, kotiiidered-hamF-body* problems whereas electron-atom 
eollisioms euh 6emerally be reduced to a two-body (or omdbodj in a field) problem. For am excellmt 
diearrrsion or these differences -da gemeralintradactiom tonuclear prooessem see B. A. Belbtbein%Wiaws 
OrHodam Physics 9:71to 74 (i937). 



4.2 NEUTRON RESONANCES, LEVEL SPACING 

The quantity M’ in equation (4-i) depends upon certain matrix elements H as described in 

section 2.4. These matrix elemeats in turn depend upon the possible states of the intermediate 

or compound nucleus in such a way that when the sum of the incident particle’s kinetic energy 

and binding energy is equal (or nearly equal) to the energy of some excited state of the 
compound nucleus then the factor M’ becomes large resulting in a peak in the absorption cross 

section for this particular kinetic energy of the incident particle. When the particle’s kinetic 

energy is such that the total energy available to the compound nucleus is different from any 
energy corresponding to an excited state of the compound nucleus then the factor hf ’ is 

relatively constaat for variation in incident particle energy. 

Puttini these observations symbolically the general nuclear process can be written: 

A+P’C’B +R 

A = initial (target) nucleus 

P = incident particle 
C = compound nucleus 

B = residual (recoil) nucleus 

R =: emitted particle 

(4-5) 

with the energy relations: 

(Conservation of Energy) I, + Wp + E, = W, + W, t E, 

(4-6) 
(Definition of E,x) W, + W, + B,, = Wcr 

WA t internal energy of initial nucleus 

W, t internal (binding) energy of incident particle 

EP = kinetic energy of incident particle 

‘%I a internal energy of residual nucleus 

W* = intemaI (binding) energy of emitted particle 

Ea = kinetic energy of emitted particle 

E Pr = kinetic energy of incident particle when that 

kinetic energy is just equal to that necessary 
to bring the compound nucleus to an excited 
state characterized by internal energy W cr 

WC? = internal energy of compound nucleus C at resonance r. 

Perhaps the best way to appreciate the significance of equations (4-5) and (4-6) is to consider 

the (n,B process. A is the target nucleus, P the neutron, B the residual nucleus (isotopic to A but 

with one unit increase in mass number and R the emitted gamma photon. Assume A is in the 

level i rstem of the initial state, T he enerr 
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The quantity hi’ in equation (4-1) depends upon certain matrix elements H as described in 
section 2.4. These matrix elements in turn depend upon the possible states of the intermediate 
or compound nucleus in such a way that when the sum of the incident particle’s kinetic energy 
and binding energy is equal (or nearly equal) to the energy of some excited state of the 
compound nucleus then the factor M ’ becomes large resulting in a peak in the absorption cross 
section for this par&&r kinetic energy of the incident particle. When the particle’s kinetic 
energy is such that the total energy available to the compound nucleus is different from any 
energy corresponding to an excited state of the compound nucleus then the factor M ’ is 
relatively constant for variation in incident particle energy. 

Putting &se observations symbolically the general nuclear process can be written: 

A+P’C’B +R 

A = initial (target) nucleus 

P = incident particle 
C = compound nucleus 

B = residual (recoil) nucleus 
R = emitted particle 

(4-5) 

with the energy relations: 

(Conservation of Energy) W, + Wv + E, = W, +W, +E, 

(Definition of EPr) W, + W, + E,= = Wcr 
(4-6) 

WA e internal energy of initial nucleus 

WP = internal (binding) energy of incident particle 

E* = kinetic energy of incident particle 

‘wa = internal energy of residual nucleus 

W\v, t internal (binding) energy of emitted particle 

Ea = kinetic energy of emitted particle 

‘4. .s* E :,- 1 Pr = kinetic energy of incident particle when that 

kinetic energy is just equal to that necessary 
to bring the compound nucleus to an excited 
state characterized by internal energy W,, 

WC? = internal energy of compound nucleus C at resonance r. 

Perhaps the best way to appreciate the significance of equations (4-5) and (4-6) is to consider 

the (n,% process. A is the target nucleus, P the neutron, B the residual nucleus (isotopic to A but 
with one unit increase in mass number), and R the emitted gamma photon. Assume A is in the 

ground state with corresponding internal energy W,. The energy level system of the initial state, 

see Figure 16, will be a continuum since the incident neutron kinetic energy (E,) can vary con- 

tinuously. When the energy of the neutron approaches certain critical values E,,, Evs, . . . the 
total energy of the initial state corresponds to the energy levels of the compound nucleus Wcs, WCs, 
. . ., respectively, and the probability of neutron absorption increases as shown in the lower graph 

of Figure 16. Now since the compound nucleus when excited to any one of these levels can get rid 
of its excess energy by more than one process, e.g., (a,%, (n&I, (n,p), it follows that all the 
resonance peaks observed in the cross section do not necessarily correspond to an (n,?) process. 
For medium weight nuclei one can be certain from energy considerations and the effect of the Coulomb 

potential barrier that at least the first few levels do correspond to true neutron capture. Of course, 
neutrons with large kinetic energies may bring the compound nucleus to excited states where several 
processes compete in achieving ultimate stability. 
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If the first resonance peak occuts on the average for, say, nuclei of medium weight at Er,“‘E, 

then it would be anticipated that the energy level spacing of medium weight nuclei (in the region 
of excitation corresponding to the binding energy of the incident particle) is of the order of 
magnitude of E. For medium weight nuclei such “first capture resonances” occur at -10 electron 
volts, so that the energy level spacing at compound nucleus energies (WA + W, * 8 Mev) is of 
the order of 10 electron volts. Experiments with such nuclei that are near their ground states (e.g., 
excitation by gammas) indicate that the spacing between energy levels is of order of IO” or 10” 
electron volts at low energies. 

4.3 TWO NUCLEAR MODELS 

The fact that the level spacing decreases very rapidly with excitation energy for medium (or 

large) weight nuclei needs explanation. Qualitatively this fact can be appreciated by considering 
two models of the compound nucleus: (1) a mechanical system with many degrees of freedom (2) 
a aeutron-proton gas. 

In the first model the nucleus is represented by a mechanical system with A members ( A = 

mass number), each member having three degrees of freedom. Since the total number of degrees of 
freedom is 3A the system will sustain vibrations with 3A characteristic frequencies. With a 
vibration frequency Y there is associated aa energy hx If the system is vibrating with frequencies 
ur and 7~s at once it has an energy hv, + hvs. In general it will have an energy: 

aihul * a$ut + ashus + . . . . . a,hu, 

where the a’s are integers. If Ur = Us = Us, etc., it is easy to see that at high energies there will 

be more levels per unit energy. This is strictly an inexact qualitative argument but the basic 
idea, that a system of many degrees of freedom wil1 pack its energy levels at high energy, is 
correct. 

This type of consideration can be refined by depicting the nucleus as a liquid drop (Bohr 

and Kalckar proposal: Kgl. Dansk Acad. Vol. 14, No. 10, (1937)). The liquid drop is held together 
by the attraction of each part of the drop to the nearest neighboring part of the drop, that is by 
short range forces (short compared to droplet dimensions). Drop volume is proportional to drop 
mass. Similarly nuclear forces are short range forces with each proton attracted to the very few 

neighboring neutrons or protons and the nuclear volume is proportional to the total number of 
neutrons aud protons in the nucieus. Considering a spherical drop there are a number of possible 
modes of vibration. Higher modes will be characterized by a relatively ‘*wrinkled” surface, that 
is many nodal lines; tk energies corresponding to these higher modes will be relatively closer 
together than those for lower and fundamental ‘modes. This liquid drop model will be discussed 
Iater in the chapter on fission. 

The second nuclear model is a Fermi gas of neutrons and protons in a potential well. The 

temperature of the gas is T. When T = 0 the nucleus is in the ground state with some particles 

moving rather fast nonetheless because of the Pauli exclusion principle. If energy is fed into 
the gas some particles move faster and T increases. It can be shown that for a degenerate gas 
of the type here considered the energy is proportional to the T s rather than T. In fact, 

Energy = U = (7vs/4)(A/&? 

A = number of particles 

r= kT 

5 qnergy of ground state 
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Figure 17. Fermi gas model: potential well 

In the potentiaI well chosen for the nuclear model, Figure 17, 5 is ,* 20 Mev. Writing U as a78 

the entropy S (= au/%) is just 2aTor m. The entropy is customirily written as log 
P + constant where P is the probability of the state in question or statistically the number of 
states per unit energy interval. Thus 

S = log P + constant 

P “constant = e* = Poe 4x or 

with PO the value of P at U = 0. Applying this to a medium nucleus with 8 Mev excitation 
(A cII 100, 5 r\, 20 Mev) shows that the density of states is Poe m or PO* 10 ‘. That is the 
density of states (number of states per unit energy) at 8 Mev is 10’ times what it is at the 
ground state. This is somewhat too high. 

In conclusion it should be pointed out that the foregoing only indicates treads and 

should not be taken for more than it is worth. The essential idea is that the nucleus is a 
system with marry degrees of freedom. Almost any approach shows logarithmic variation in 
level density. Achieving numerical consistency is an almost impossible task be&se of the 
lack of fundamental knowledge of nuclear forces and the lack of mathematical apparatus for 
handling what is essentiaIIy a many-body problem. 

The reader is referred to Bethe’s “‘Nuclear Physics, Part B” (Rev. Mod. Whys. 9(1937)) 

section 53, pages 79 to 90, for a summary of the various approaches to the problem of nuclear 
energy level distributions. 
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PROBLEMS 

1. Find all the information you can in the literawe about indium and gold resonances far 
neutrons. 

2. From the literature find the first resonances for nuclei with mass numbers A t 100 to 

A t 150. Make an estimate of the level spacing in this range. 

3. Make a table of level density for Be at 4, 6, 8, 10 Mev excitation u&ing the neutron- 
proton gas modd. Do the same for Fe, Ag, Au. 



CHAPTER V 

THESCATTERINGOFNEUTRONS 

5.1 THE BBEIT-WIGNER FORMULA 

For certain special cases, the matrix elements occurring in the gene& formula for the cross 
section, that is, the factor M discussed briefly in section 2.4, can be reduced to relatively simple 
formulas. In particular, if the resonance levels of a compound nucleus are far apart and we are 
interested in the cross section in the neighborhood of one of the resonance IeveIs, the expression 
for the cross section of an (a,b) process can be shown to take the form: 

a(a,b) = nfcIs L L 
@a- Ed” + (r*/4> 

(5-l) 

E. is the kinetic energy of the incident particle, 4 its deBroglie wavelength, m the mass of the 
incident patticle, M the mass of the target nucleus, E r is the resonance level energy (E in 
Section 4.2) of the compound nucleus, and r the width of the resonance peak at half itsP~aximum 
value. ActuaBy equation (5-l), known as the Breit-Wignet formula, should be multipIied by factors 
depending on the spins of the initiaf particles and the compound nucleus. For simplicity, consider 

these factors to be incorporated in the r and rho r. and r, are the partial widths of the resonance 
peak and are associated with the probabiky of emitting ‘*a” and “b” particles, respectively. 
Their exact form is rather complicated, but since the probabiIity of emission of a particle “b” of 

momentum p, [ see equation (2-H)] is proportional to p,*/v,, then so is ra. The relative probability 
that the outgoing particle will be an ‘*a” particle is r,/r, relative probability that it will be a “b” 
particle, rdr, etc., SO th& the SW of all ri is r: 

cr, =r 

i = a, b,... 

If T* is the average time of emission of a particle i after the formation of the compound nucleus, then 

ri 3 z'-tr- (5-3) 

This is a restatement of the uncertainty relation discussed in section 4.1 and expressed in 
equation (4-4). The probability that no particle i has been emitted from the nucleus up to a time 

tis #L,,,..,exp (- t/7--) = exp(ts l/7-) = eBdr 

where t is the average life of the compound nucleus: 

7 = cp1/7* 1 -l (5-4) 

If one describes the emission in terms of the disintegration constant X = l/ r the exponential 
reIatio0 is see0 to be the familiar exp (-ht). Th e average Iife T is seen to satisfy the Heisenberg 

‘relation in the same m,anner as the 7f that is, r,z %. 

The Breit-Wigaer formula of equation (5-l) can be applied to any nuclear collision involving 
the formation of a compound nucleus , provided that the resonance levels are not so close together 

35 
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: that they appreciably distort this one-level formula. It can be applied, for example, to (n,* processes, 
For resonance capture in indium, it is observed* that E, = 1.44 ev, a(n,y) at resonance 2 26,000 

barns,r 2 0.09 ev. In addition, the experimental measurements show that only neutrons and gammas 

are observed to be emitted (thus r = rn + rr ), and more gammas are emitted than neutrons 
(ry>rn). With these experimental data, it is desired to find the number of neutrons enritted 

for each gaaaa .&nit ted. The solution follows from equation (5-l): 

cr(n,r) at resonance = 4? x2 rn r,/ r2 

g 4wZmE.; m = Neutron mass 

Substituting the experimental values of cr and E r gives the value 

1 ‘tl. ry, /ra = 0.015 

Since rI, < ri,i.ihen r,, 2 r = 0.09 ev. ~1s; r,r,/r 2 2 I?& = 0.015, from which r,, = o.olsr = 

0.015 x 0.09 = 0.0013 ev. Thus the ratio of widths is rll/r, = 0.015, or for each thousand gammas 

emitted, approximately 15 neutrons will be emitted. 

The same reasoning for gold and silver+ shows that: 

Au: Er = 4.8 ev, u,,,- * 60,oaO barns, c 0.1 ev (experimental) 

rmrO.Ol ev, r, %le~, rn/rh.wdditd~ 

Ag: E, = 5.1 ev, ores= 7200 barns, r = 0.19 ev (experimental) 

r, = 0.0027 ev, r = 0.19 ev, rn /r = 0.014 (calculated) 

The captuie reactions for indium, gold, and silver are very useful in methods of slow neutron 

detecti0n.H 

5.2 SOME GENERAL CONSIDERATIONS ON NEUTRON SCATTERING 

For the eIastic 
b = n and E, 2 0, 

: i 

scattering of low-znergy neutrons, formuIa (5-l), by virtue of the relations a = 
reduces to ’ 

0 b,n) =i7fp--,z/E,z (5-5) 

IEn' 0, r<<EJ 

The inequality is assumed and limits the applicability to neutrons whose energy is less than the 

first resonance energy and to cases where the width of the first resonance energy level is much 
less than the energy itself. Now since & is proportiona to l/pv,, and rtl is proportional fo p,’ /v. 

or psv where p and Y are momentum and velocity of the neutron, and since v,, = v. (elastic 
collisi&), then itefollowl rhat A-’ r, is proportional to pa and should be fairly constant for . . . 
scattering of neutrons with ener$es less than the first resonarice energy. 

*Physical uevie* 711ltwj (lfw7). 
*Ys. Review 74:1& ?(lW8)j 71~188 (1847); 71~767 (l-7). 
-j-par a Enlmmary jo+$ivrtion cros* sections for t,he~al neutrons, See la. Seren, N. N. Friedlander, 

S. 8. Tuurkel in BWI; .Revj. 72~888 (1917). 
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The curve for scattering in hydrogen (paraffin) shown in Figure 18 exhibits a fairly constant 
cross section of 21 barns at low neutron energies. However, at very low neutron velocities, there 
is a sudden increase of %. This is explicable in terms of the variation of pa. For neutrons 

scattered from hydrogen, p is half the neutron mass except where the relative neutron-proton 
velocity is too small to provide sufficient -energy to free the hydrogen (bound to the paraffin) or 
excite the molecule. In this latter instance, which obtains for very slow neutrons, the hydrogen 
bound in the large molecule has an effective mass that is very large. Thus. 

I-L = 1A for En > binding energy of H to paraffin 

CL = 1 for En << binding energy of H to paraffin 

So that the r,, will stand in the ratio of the squares of CL, or I:4. This will increase the scattering 
cross section for very slow neutrons. In Figure 18, it is seen that experiment confirms that this 
increase is by a factor of 4 so that the neutron scattering cross section (measured in chilled 
paraffin*) is about 80 barns. This result may be stated as follows. 2he scattering cross section 
fm slow neutrons incident on bound protons is few times that for free protons. 

5.3 SCATTERING BY A POTENTIAL 

In cases where resonance effects are negligible, the problem of elastic scattering of neutrons 
can be treated by considering the target nucleus to be replaced by a potential well. The analysis, 

then carried through by the usual methods of Schroedinger theory, turns out to yield results valid 
for thermal neutrons scattered by many elements. It is possible to determine accurate information 
on o* even though the shape of the potential is not known with any certainty. 

NEUTRON ENERGY (ev) 

Figure 18. Hydrogen Cross Section [ Rev. Modem Phys. I$260 (1947)]. 

*Also measured using graphite filter, See Phys. Rev. 70:815 (1946). 
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Figure 19. Potential Well Representation of Neutron-Nucleus Interaction. 

Figure 19 shows the general shape of the potential well. .The wave function $of the incident 
particle satisfies the Schroedinger equation: 

V’$!I + ( 2m/fia)[E - U(r)] I#J =O (S-6) 

Where E is the incident particle energy and U the nuclear potential. Considering only s scattering 
(zero angular momentum), the Schroedinget equation reduces to the radial equation: 

1 d 
r2 

d+ +2m 

r* dr dr 18 LE - VW1 y!~ = 0 
(5-7) 

or us i- (2m/&*)(E - U)u =O 

with u =r$andu” =dsu/dra 

The latter simplified form is derived from the relations II” = (r$$” = (r#’ t I#)’ = $4 + 

V’ = (l/40( ) ’ where the primes indicate differentiation with respect to r. 

Now in the scattering problem at hand, equation (5-7) must be solved for the particukr form 
of U(r) chosen to represent the nucleus with the boundary conditions $4 at r = CQ and +finite 
elsewhere. Inspection of (5-7) shows that whenever E - DO, the curvature of u is negative 

(u curves toward r axis), that is, U”/U = -’ (2m/6*) (E - U)<O. For E - U<O,the curvature 
u”/u>O, and for E - U = 0, it follows that u*/u = 0. Referring to Figure 19, it is apparent 

that there are three cases to consider: (a) E>O, in which case E - U>O for all r, (b) E = 0, 
for which E - U>O within the nucleus and E - U = 0 outside (c) E<O, in which case E - U>O 

inside the nucleus and E - U<O outside. The soktions for the three classes of values of 

(E - U) can be readily determined to be: 
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E- u>o u = A pin [dm(E-U)/li“ rl + B cos [&m(E-U)fi’ r3 

E- U=O II= A’t t B’ (5-N 

E - UC0 u =Akp[- &U-E)fi* t] + B%xp[&~@ r] 

Boundary conditions determine the values of A, B, A ’ , B ‘, etc. These conditions arc that u/r 
(=+) is finite everywhere and vanishes at infinity. Ia addition, the first derivative murt be continuous. 

With these conditions and the solutions of (5-8) in mix&Figure 20 can be constructed. In all 
instances, u must be zero at r = 0, since u/r = $~must remain finite. The variation of u with r is 
fairly straightforward for the cases E>O and E = 0. The situation when EC0 needs explanation. Near 
the origin, the usual oscillation is observed with increasing period as the function E - U decreases. 
At r = r0 (ace Figure 20), the oscillation stops, and at greater values of r, the exponential solution, 
Iast equation, (5-S), must reduce to a single negcrtSv& exponential, since the positive exponential 
would not satisfy the condition that u/r is finite at r = 0~. That this reduction to a single negative 
exponential is not possible for aB values of E is shown in Figure 20 (E<O) where for E = E,, the 
coefficient of the positive exponential is negative and for E = Es, the coefficient is positive. 
Between E, and Es, there must be some value of E for which the coefficient vanishes. Then may 
bc a number of vahcs of E for which u/r is finite at r = a. These are the allowed values of E for 
E<(J co~spon&ng to the discrete spectrum or the bound states of the system. 

The case E>O corresponds to the case of an incident particle (positive kinetic energy). As 
shown in Figure 20, the wave function outside the nuclear radius is a sine function A sin (/w 
r+s) where g is a phase shift depcndcnt on the wave function within the nucIeus to which the sine 

must be joined (at r = R). The sine function does not, when extrapolated, seem to come from the 
origin (dotted line figure) but appears to have its origin at a distance *‘a*’ from r = 0. This distance 
is related to S by the equation s/h= S/271 with X= 2&/ m (the de Broglic wavelength of the 
incident particle). 

Now it can bc proved* that the scattering cross section is directly dependent on this phase 
shift 6 in such a way that when 6 is small (or an integral multiple of n), the scattering cross section 
is small, and when 6 is n/2 (or an integral multiple of 77/z), ihc cross section is a maximum. The 
relation between S and aS is: 

O* = (4&s/msvP) sin* 6 (6 scattering only) (5-9) 

The limitation to s scattering means th8t the incident particle has zero angular momentum. On a 

cIassical basis, a particle with velocity Y at large distances from the nucleus moving in such a 
direction that it would pass the nucleus (if unaffected by nuclear forccs$at a distance b, Figure 21, 

has an angular momentum mvb. According to quantum mechanical principles, this must be quantized, 
or mvb = I& (1 = 0, 1, 2...). Thus b = Iti/mv, or b = U(7i= de Broglic wavelength x 277). The region 
between 1 = 0 and 1 = 1 or b = 0 to be = x is the region of s scattering. Between b = hand 2xis 

the p scattering region. Now if the nuclear size is less than &that is, R<i=2q/mv, then it is 
obvious that no p scattering is possible. Particles passing at ‘*p distances” from the nucleus will 
not be aware of the nuclcugduc to the short range character of nuclear forces. Recalling the dis- 
cussion in section 2.2, it is apparent then that there is s scattering only if the neutrons ave 
slow. 

For very low velocities, the formula (5-9) can be simplified. This is due to the fact that the 

wave function inside the nucleus wilI change very lit& with changes in E when E is small. For 

this reason, **a” does not vary. However, Aincreases as E*, with the net result that a/&becomes 

+Rasetti, p. l Elements of nuclear PW~ICS, . 102& PreptlccEdl, p. 204f+ Yott, R.F. and 

IL 8.1. MasseY, l l’,m,ry Of At‘bmf.2 Cd1iCiWS,* mf-d. 199% 
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Figure 20. Scattering from a “potential well.” 
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Figure 21. Quantitizing the angular momentum. 

very small. Since 8 = 2r(a/h), we can replace sin2 6 by S’ and obtain 

o- ecat = (4 nri2/mav2)(4 da2/X2) = 4na2 (E-O) 

The simplification follows from the relation h = h/my. 

In the case of bound states, the scattering formula (59) can be shown to reduce to 

4+2 
a seat = m [E + (E/2)1 

(5-10) 

(5-11) 

E = biding cncfgy of newrun when bound to the nucleus 

E = kinetic energy of incident neutron 

It is not always necessary for E to bc positive or “‘real.” There arc cases where “%irtual” statcs’of a 

nucleus may exist, these virtual states being charactcrizcd by negative c. In such cases, the neutron wave 
function will be periodic inside and outside the nucleus but will have a larger amplitude inside than outside 
for that particular energy associated with the virtual state. When E is negative, the absolute value is used 
in equation (5-11). An CXCUEI~!C of this occucs in the scattering of neutrons by protons. (The protons 
arc considered “free” i.e., not bound chemically, in the following.} The cross section for scattering 

of slow neutrons by protons is dependent on what states are possible for the deuteron (combination 
of neutros~ and proton). There are two types of states, ?singlct” and “triplet” states, associated 
with zero and unit total spin quantum number: 

S = 0 (one singlet states; anti&trallel spins) 

S = 1 (three triplet states; parallel spins) 

(Number of states = 2S + 1) 

Jt has been observed experimentally that the stable ground state of the deuteron is the S = 1 state, 
so that the triplet deutcron state has a positive E. The S = 0 state is probably virtual, although 
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Figure 22. Fast neutron detector and recoil proton collimator. 
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it is so small that it might’be of either sign. Thus the scattering cross section for neutrons on free 

protons is: 

u = F [f E ; (E,2) + r 1 scat . P 4 1 EC{ + (E/2? 

where E = energy of parallel spins state of the deuteron E, = energy of antiparallel spins state 
(virtual)‘and the 3/4 and I/4 factors properly weight triplet and singlet states, respe&vely. 

Direct experimental evidence for the existence of singlet and triplet states of the deuteron 
can be obtained from measurements of slow neutton scattering on hydrogen mole&es. The hydiogen 

molecule can have two forms,“ortho” and **para.” In otthohydrogen, the two protons have parallel 
spins, while in parahydrogen, they are antiparaIle1. Now a SIOW neutron (de BrogIie wavelength 
larger than interatomic distance) incident on patahydrogen will be scattered by one proton with spin 

parallel to the incident neutron spin and by the other with antiparallel spin. The resultant neutron 
wave will he made up of real state scattering pIus virtnaf state scattering (if the antiparallel 
spin, singlet state, of the deuteron is virtual). Since on theoretical grounds scattering for real 
states is 180° out of phase with that for virtual states, it follows that parahydrogen scattering 
should resuit in out-of-phase scattering from the two antiparallel spin hydrogen atoms, i.e., a 
small scattering cross section. Similarly, scattering of slow neutrons on or&hydrogen should 

result in scattering “in phase” from the two atoms, resulting in a larger scattering cross section. 
This has been observed experimentaIIy and confirms the hypothesis of a virtual singlet state of 
the deuteron. 

The scattering of neutrons in hydrogen is the basis of an important method for fast neutron 

detection. lf a thin layer of paraffin is exposed to the neutron flux, then each neutron that is scattered 
gives rise to a recoil proton. The recoil proton has an energy of the same order of magnitude as the 
neutron energy. The proton, being charged, can be detected by an ionization chamber, as shown at 

the left in Figure 22. To measure neutron energies a collimating device (right in Figure 22) can 
be used so that only protons scattered in the direction of the incident neutron flux are allowed to 
enter the ionization chamber. The pluse in the chamber can be calibrated in terms of proton energy, .’ 
and in this way the original neutron energies can be determined. Of course, the paraffin must be 
sufficiently thin to make multiple scattering of the incident neutrons negligible.. (This limitation will 
be understood better after Chapter VI.) 

In general, neutron scattering cross sections show complicated variations with energy. These ~eg~~i&-s are related to resonance phenomena not covered in the simple theory of these sections. 

Cross section versus neutron energy for two important scatterers, carbon and oxygen, are shown in 
Figure 23. It is not always possible to measure scattering cross sections directly. Generally, totaL 
cross sections are measured. For fast neutrons scattering predominates, so that the total cross 

section is effectively equivalent to the scattering cross section. For lower energies (below 1 Mev) 
this is not’generalfy true, although for graphite and oxygen scattering predominates. 

5.4 THE SCATTERING OF NEUTRONS 

Referring to Figure 11, page 21, it is apparent that neutrons with energies less than 1 ev have 
de Broglie wavelengths of the order of Angstroms (IO* cm) or greater. Since interatomic distances 

are likewise of the order of Angstroms, it might be expected that slow neutrons scattered by atoms 
will exhibit interference effects. This is actually the case. The anomalous scattering of slow 
neutrons by ortho- and parahydrogen, as we have seen, can be explained as an interference effect. 

It is possible to study these effects by experiments analogous to those used in the study of 
x-ray diffraction and interference. Suppose a collimated flux of slow neutrons, Figure 24, is incident 
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Figure 24. Scattering of neutrons by single crystaI. 

on a crgstd. If the angle of incidence 6 (angle between incident beam and crysta1 surface) is 

varied and for each value of 8 the scattered intensity is measured with the detector, it is found 

that neutrons obey a Bragg-like formula: 

ah = 2a sin 8 6-12) 

where n s order of interference 
a = interplanar spacing 

h = de Broglie wavelength of neutron (h/mv) 

For fist order interference, equation (5-12) may be solved for the neutron velocity v: 

v = h/@ma sin 8) (5-13) 
This shows that if a beam of neutrons with a continuous range of veIocities impinges on a crystal, 
those neutrons of the proper v for the angle 8 wiI1 be reflected in a sharp beam at an angIe equal 
to the angle of incidence. Neutrons with other velocities wiII simply be scattered in the material 
in a normal way. 

One can easily check the fact that the reflected beam realIy contains those neutrons whose 

velocity is given by the Bragg formula by taking readings with and without a boron absorber in front 
of the detector for various angles. The boron cross section as a function of v is well known 
(Fig-e 9, page 18), so that from the observed wversus 8 curve, one can compute v versus 8. 
This latter would be found to be the Bragg relation, aside from compIications due to higher order 
reflections, etc. 

It is apparent that the combination of a crystal and neutron detector can be used* to analyze. 
a beam of neutrons for its velocity distribution (in a manner analogous to the analysis of an x-ray 
beam for wavelength distribution). For example, the slowed-down neutrons emerging from a tank 

*!8eutron crystal spectrometry has been made possible Usin the hij@ neutron flux iron chain reactin Piles, see Pays. Rev. TO:667 (1948); 71:762, 767 (1947). 



AECD-24564 45 

INTERPLANAR 
SPACING = a 

NEUTRON IS INCIDENT ON SUCCESSJVE MICRO 
CRYSTALS AT ANGLES 8, 8g 8,. . . . . IF THE j th 
MCROGRVSTAL IS SUCH THAT 

v = h/(2ma SIN 8j I 
THEN THE NEUTRON WILL BE SCATTERED 

Figure 25. Scattering of neutrons by microcrystals. 

of water, in which a neutron source has been placed, can be .analyzed and found to have a Maxwellian 

distribution. 

Microcrystalline substances scatter neutrons much better than regular crystalline substances. 
This can be understood by tracing the course of a neutron through a microcrystalline medium, 
Figure 25. If the Bragg condition is not fulfilled when the neutron arrives at the first microcrystal, 
then the neutron will pass on through. Otherwise, it will be reflected. When the neutron arrives at 
the next microcrystal, it must once again pass the test of not fulfilling the Bragg condition if it is 
not to be scattered. Were there but one crystal the neutron would have but one test to pass. How- 

ever, with many randomly oriented microcrystals, the neutron has a large chance of being scattered. 
For a single large crystal, only those neutrons whose velocity satisfies the Bragg condition will 
be scattered. For the microcrystalline structure, sooner or later all velocity neutrons of the original 

beam will be removed as the beam passes from one crystal to the next.* 

There is one very important difference between x-ray and neutron scattering. If the crystal is 

composed of two isotopes, the x-ray scattering is not particularly different from that which would 
be observed for a single isotope species, since k-ray scattering depends on the extranuc Eear 
properties of an atom. Since the extranuclear properties of two isotopes are very nearly the same, 
x-ray scattering is insensitive to isotope differences. On the other hand, in neutron scattering, 
the nut Zeus itself enters into the scattering process. Nuclei are such that in addition to de- 
termining the magnitude of the scattering cross sections, the phases of the scattered neutrons are 
determined. 

Consider a neutron being scattered by two isotopes. If the first species has a scattering cross 
section C& then the amplitude of the scattered neutron wave is proportional to G1. Similarly, the 
the second species scatters with amplitude proportional to 6s. Suppose we write these amplitudes 

in a sum and difference form: 

l shis effect was observed la early experiments on sllfea: *Ye- Rev- 54~771 (1936); S5:llOl (1938). 
see also reeeat data in Plays. Rev. 7o:l315 (lS46)i 73:741 (l-3). 
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(5-14) 

Thefirst term is common to both, that is, the scattered amplitude is the same for this term (the 
so-called “coherent” part). The second term, “incoherent” part, is opposite in sign for the two 
amplitudes. The coherent part gives rise to interference, whereas the incoherent part gives rise to 

scattering as if from an unordered assembly of atoms. 

How deep wilI a beam of neutrons penetrate inside a crystal if the Bragg condition is satisfied) 
Consider a beam of v neutroos/cm2/sec incident on a simple cubic crystal, Figure 26. If there 
&e.but one atom in the crystal, then the number of neutrons scattered would be VD neutrons/set. 

This would be isotropic, so that at a distance r from the crystal, the intensity would reduce to 

va/(47rr *). 

e 

I ALTHOUGH REFLECTION IS 
SHOWN AS IF FROM ONLY 
ONE PLANE, ACTUALLY TOP 
M,LAYERS CONTRIBUTE1 

NEUTRONS/cm?/SEC 
AT DISTANCE r FROM 

I/C N4 d/r2 CRYSTAL SCATTERED 
FROM M, LAYERS 

z/= NEUTRONS/c&SEC &* 
I 

CUBIC LATTICE 
INTERPLANAR SPACING + a 

SATISFIES BRAGG RELATlON 
nXs2a SIN e 

Figure 26. Bragg reflection of neutrons. 
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The amplitude of the neutron wave would be m Let us estimate the amplitude of 
the scattered wave in the reinforced directon. This will be the amplitude for the single atom times 
the number of atoms participating in the scattering, that is 

N X N X Mxr/vcr/4n /r 

The intensity in this direction wil1 thus be N%f4u~(4nrP) neutrons/cms/sec. 

Now the angular spread* of the beam after scattering is just h/ beam diameter or X/(Na sin 0). 
Thus the area of the scattered beam in the reinforced direction is r* times the anguhu width 

squared or ra ?? /(Nasint9)a. Multiplying this by the intensity gives the number of neutrons 
scattered in the reinforced direction: 

[N4Msw/(4nr’j] [r*p/(Na sin e)*] 

= VQN*M’( N a)s/ (4~ sins 6) neutrondsec 

It is to be noted that in the above derivation, the attenuation of the neutron intensity in passing 
through the M layers has been neglected. If we further simplify by considering all reflections are 
first order (n=l=2a sin B/A), then the total number of neutrons per second in the reinforced direction 
is 

Neutrons/set scattered = vcrNaM2/ m (5-15) 

Now if the crystal were a perfect reflector, then all incident neutrons would be removed from the 
beam, that is, just v (neutrons/cms/sec) times (Nasine)‘, tk .beam area. This number can be 
considered the upper limit for the scattered beam. Thus 

wN*M* /‘IT < vN*a’ sin’ 8 

or 0hP < as(7r/4XA/a)’ (5-S) 

the latter since sin 8 X/2a for first order effects. If we assume A% a, the inequality may be 
written as an order of magnitude relation M < a/ da. 

What is the significance of this inequality? It means that the layers beyond MQ = a/& 
do not contribute to the scattered beam. Put another way, the beam does not penetrate beyond M0 

layers. Numerically, if a is 3X lo4 cm and cabout 4X 10 

3x 10*/2x10-~* 2 

-s4 cm*/atom, then Mis of the order of 

10’. Thus about IO’ planes play a vital part in Bragg reflection. The depth of 
penetration will be M,a or Q 5 X IO4 cm = 5 microns. 

Throughout the foregoing discussion, it has been assumed that the only attenuation of neutrons 
is due to Bragg-Pie reflection. Consider a heterogeneous beam of neutrons incident on a large 
perfect crystal. Those neutrons that satisfy the Bragg condition will be scattered out of the 
beam in penetrating the first few microns. However, those that do not satisfy the Bragg condition 
generally will not be transmitted without some loss in intensity. The reasons for this sre: 

1. The presence of isotopes makes a random irregularity resulting in incoherent scattering 
for all velocities. 

2. The random variation of the spin direction of uucfei also results in incoherent scattering. 

3. Even if the crystal were regular, the thermal motions of the atoms would contribute to non- 
Bragg scattering. 

4. The crystal atoms will generally have a finite absorption cross section even though 

u<<u .a a* 

atie f,,'ormu'l,, &,ould he ,."ltIplied by a constant depending cm shape Of beam area. See -'Y standard 
physical optics text. 
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It is possible to use interference phenomena to obtain very slow neutrons. Rewriting the 
Bragg formuia, equation (s-12), as k = 2a (sin B/n) or X < 2a, if is apparent that neutrons with 

h> 2a cannot be Bragg-reflected. All scattering of neutrons with wavelength greater than twice 
the interplanar spacing would be due to the four listed causes. If graphite is used, the fact that 
there is only one isotope (-99%) and tbe spin is zero (even mass numbers usualiy have zero spins) 

minimizes scattering from spin and isotopic irregularities. For graphite, 2a = 6.69 X lo* cm, 
so that the limiting A is 6.69 Angstroms, corresponding to a neutrou energy of (0.2848)‘/ Aa 
(see Figure 11, page Zl), or 0.0018 ev. Suppose (Figure 27) a Maxweilian distribution of neutrons, 
peaking at 0.025 ev for graphite at room temperature, is incident on a polycrystalline piece of 

graphite. Then, as a consequence of interference, the graphite will (in an appreciable distance) 
weed out all neutrons with energies above 0.0018 ev. only those very slow neutrons with A> 2 a 

will not be scattered out of tbe beam by Bragg reflections. Moreover, because of relative isotopic 
uniformity, zero spin, and small absorption, these “cold” neutrons will be able to get through the 

graphite wi&~ni~~Zmutn attenuation. Thus it is possible to secure a very rrcold” beam using tbeimal 
nentrous ad k polycfystalline graphite **filter.“* 

‘%OLD” NEUTRONS IN 
SHADEO AREA ARE 
TRANSMl*T~i THf’@lJGH 
POLYCRYSTAUINE GRAPHITE 

1 
0 1 2 3 4 5 

E/W - 

Figure 27. Xfaxwell distribution and “coid” neutrons. 
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Neutrons exhibit total reflection characteristics in a manner analogous to x radiation. If a 
beam of r rays is incident on a polished surface at a glancing angle, the beam is totally reflected. 
Most substances have indices of refraction for I rays very slightly less than unity. The index of 
refraction is closely related to the scattering properties of the substances since the interference 
of scattered x rays and incident x rays is responsible for the resulting wave transmitted in the 
substances. The change of phase in the transmitted wave can be described most conveniently in 
terms of wave velocity change or a refractive index. The same phenomena occur for neutrons 
incident at glancing angles on a polished surface. The index of refraction for neutrons is also 
,very close to unity. This means that a converging lens for neuaons would have to bulge very much 
along the axis to be effective if it were made of substances where the refractive index is slightly 

greater than unity. For substances in which the refractive index is less than unity, a converging 
lens would look like the diverging lens of optics, that is, very thin close to the axis and thick at 
distances far from the axis. While these lenses ate possible in principle, the fact that the refractive 
index is always very close to unity makes neutron Leases impractical. 

PROBLEMS 

1. Given R - 0.262 X IO-l2 cm (the classical electron tadius) and a depth of a rectangular 

potential well of 10.8 Mev (the singlet state of the deuteton) and of 19.7 Mev (triplet state), answer 

the following questions concerning the scattering of neutrons by protons. 

1. &t there any bound states in each of these cases? 

2. What is the value of ‘!a”? 

3. What is the average cross section for low velocity neutrons in hydrogen? 

2. For NaCl [using the (001) planes only] make a table of the h reflected (1st and 2nd otder) 
at the following various values of angle 0 = 1, 2, 3, 4, 5, 10, 20, 30, 40’. Calculate the neutron 
energy in ev for each A. What is the relative intensity of first and second ordet beams, assuming 
a Maxwell distribution (T = 3OOOK) for the neutrons? 

3. show that if a continuous distribution of neutrons impinges on a microcrystalline substance 
where M< M,, that the scattered intensity is of the order of that expected from a noncrystalline 
substance of the same number of atoms for al1 energy neutrons. Use the fact that the resolution of 
a micrncrystal reflecting neutrons of wavelength X according to the Bragg formula is given by 

8 A/ A- l/M. 



CHAPTER VI 

THE SLOWING DOWN OF NEUTRONS 

6.1 THE CHANGE OF DIRECTION AND ENERGY UPON COLLISION 

When a neutron is elastically scatrered by a nucIeus, the nucleus being initially at rest, 
.generalIy there is a transfer of kinetic energy from the neutron to the nucleus. If the struck 
nucleus is hydrogen, then the neutron will lose of the order of half its energy in the collision. 
Successive collisions will, on the average, continue this process, so that a 1 Mev neutron 
becomes thermal (0.025 ev) in about 24 collisions. 

in this chapter, we shall consider in detail the nature of this slowing down process. It 
will be found that classical co11ision theory is applicable and leads to resuEts in agreement 
with experiment.. As in the classical problems of colliding bodies, it is convenient to set up 
two frames of reference: 

The laboratory system ( R system) -In this system, the frame of reference is determined by 
considering the target body at rest before the collision. 

The center of grawity system (C system) - In this the frame of reference is determined by 

considering t&e center of gravity of target and projectile at rest. 

In the latter, it is apparent th,at we are looking at the assemblage of colliding bodies as a 
whole and considering its center of gravity as stationary. It is important to note that all 
exfieeriaental measurements made of nuclear collisions use the laboratory system of 
reference. On the other hand, practically all laboratory systenz of reference. On the other 
‘hand, practically al1 theoretical calculations are made in the center of gl-amity system. 
We shall see that the C system affords a view of things that is basically simpler than that 
of the R system. 

Consider in the R system the collision of a neutron (mass = I)of velocity v with a 

nucleus of mass A, initially at rest. Since the total mass of the system of colliding particles 
is A + 1 and the initial neutron momentum is 1. v, it follows that the velocity of the center of 

gravity (as seen in the R system) is v/(A + 1). The velocities of the nucleus A and the 
neutron relative to the center of gravity are v/(A + 1) and vA/(A + l), respectively. These 
velocities are in opposite directions, so that the total momentum of the system with respect 
to the center of gravity is zero. After the collision, the magnitudes of the velocities are 
uncahnged, but the directions of motion are along a different line. (see Figure 28). The 
magnitudes must remain unchanged, since the tota momentum with respect to the center of 

gravity must remain zero. The change in direction will depend upon the exact nature of the 

collision. If 0 is the angle between the initial direction and scattered direction (in the 

C system), then 8 = 0 means the collision was “glancing” while 6 = nmeans it was “head- 

on”. 

It is apparent that an observer in the C system would see the two colliding bodies 

initially heading for each other along a single straight line, with the heavier body moving 
more slowly. After the collision, the C system observer would see the two bodies moving 

away in diametrically opposite directions, with unchanged velocities. The C system ’ 
observer would say that the collision process was isotropic i f al 1 angl es ( 8) between 
“before” and **after” directions of motion were equally probable. As the C system has no 
preferred direction of motion (center of gravity at rest), we adopt the same terminology and 
call the scattering isotorpic when all va1ue.s of 6 are equalLy probable. 

50 
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Figure 28. Neutron Scattering: Center of gravity system. 

Now the transformatioa from the C systeti to the R system is readily made if we consider 

that the C and R systems move relative to each other with a velocity equal to the velocity of the 
center of mass in the laboratory system. This velocity is the same as the initial velocity of the 
aucleus A in the C system, or just v&A + 1). Taking this vector and adding it to the “after” 
velocity of tbe neutron in the C system [vA/(A + l}] gives us the %fter” velocity (vd) of the 
neutron in the R system (see Figure 29). It is apparent that the angle of scattering in the C 
system, that is, 8, is not the same as the angle of scattering in the R system, +.It is readily 
proved (by the sine law) that 

Asi&-& =sin#~ 

or taa(b= A sin 8 (6-l) 
1 +Acas@ 

Both expressions are equivalent. With either, it is possible to convert scattering angles from one 

system to the other. 

The neuaoa energy before the collision in the R system is mv*/2. After the collision, it is 

mv ’ a/2. Thus the ratio of neutron energies after and before collision as observed in the R system 
is (v ‘/v)‘. This ratio can be determined from Figure 29 by the cosine law: 

V ’ * = [v/(A + l)] * + [&(A + l)l ’ + hAv’/(A + l)“] cos 8 
(6-2) 

K.E. after collision E’= A=+1 +2Acose 
K.E. before collision= E (A + 1)s 



AECD-%W4 

-8 - 2$ SCATTERING IN C SYSTEM 

SCATTERING IN R SYSTEM 

/ 
NEUTRON VELOCITY 
AFTER SCATTERING 
IN C SYSTEM 

NEUTRON VELOCITY 
AFTER SCATTERJNG 
IN R SYSTEM 

Figure 29. Neutron Scattering in laboratory (R) system. 

It shouId be noted that aIthough equation (6-2) is the ratio of the kinetic energies observed in the 

laboratory system, nevertheless, the angle 6 is the angle of scattering as observed in the center of 
gravity system., This could be expressed in terms of the laboratory scattering angIe 4 by means of 

equation (6-l). However, since we are going to want to average over all angles, we will keep the 
C system scattering angle, as averaging in the C system i’s relatively simple. In fact, for isotropic 
scattering, the average of the cosines of 0 is zero: 

(cos 4 *y = [Pas @msin e&J/ [J2 flsin @doI = 0 (6-3) 
0 0 

On the other hand, the‘average of the cosine of the laboratory scattering angle is not equal to zero 

but is a positive number, showing that the colliding partiiles have,a tendency to preserve their 
direction of motion. From equation (6-l), it follows that: 

cos 4 =l/Jl + tans+ = A cos 8 + I 

/Aa + 1 + 2A cos 8 

Averaging the cos 4 as before: 

(cos #),, = 
$‘Zmsin ed6 E 

P 
(A cos 0 + 1) sin 0 de (64) 7 277 sin 8 de ’ 2(A’ + 1 + 2A cos @* =g 

As was expected, the average of the cosine is greatest for neutron collisions with lighter nuclei; 
that is, the tendency to keep going in the original direction is greatest when the target nucleus has 
the least mass. 
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Let us re-examine the ratio of neutron kinetic energies after and before a collision, E I/E 

of equation (6-2). The maximum and minimum values are: 

E’ = A=+1 +2Acose = 1 for 8 = 0 (glancing collision) 

E (A + 1)’ for 8 t m(head on-collision) 
(6-5) 

In collisions with hydrogen, A = 1, the limits are thus zero and unity. For heavier atoms, it is 

impossible to bring the neutron to rest. When A “1, the minimum is (A-l)‘/(A+l)’ = I -(4/A) + 

@/A?..., so that for A = 100, the greatest possible loss of neutron kinetic energy after a single 
scattering is 4%. For A = 200, it is 2%. 

NOW what is the relative probability of a neutron’s having an energy E ‘ (between the limits 

just described) after a collision ? Assuming isotropic scattering, the probability dp that the 
neutron is scattered into the solid angle between 8 and 6 + de is equal to that solid angle 
divided by the total solid angle 4?% 

dp = (Solid angle between 8 and 8 + d@J/4W = 2nsin 8d e/4?r = sin 8 d e/2 

The relation between dp and the range of final energy which corresponds to this range of angles 
is found by differentiation of equation (6-2). 

dE’ =- 
2AE sin t7a6 4A 

=- 
(A+r)2 

E- 
(lwl)’ 

ap 

The negative sign means that increasing ocorresponds to decreasing E. Hence 

I 

The probability that the 

final energy is between 

I 

z dp = (A+ I)* & 
4A E E’ andE’ +dE’ 

&a 

where the negative sign has been dropped so dE ’ is considered positive. Equation (6-6) means 
that the $robability of the fina energy being B’ is independent of B’.. Figure 30 is a graph of 

the distribution function p(E ‘) versus E ‘/E , showing it to be a constant, (A + 1)‘/4A, between 
E ‘/E = (A - I)2/(A+ 1) 2 and E ‘/E = 1. As a check on the normalization of (6-6), it should be 
noted that the area under the distribution .curve is unity: 

jp(E’)dE’ = -! [(A+l)“/4Al d(E ‘/E) 

,. : (SC7 
=[(A+1)‘/4Al [l-(# 1 

Using this distribution function, we could now calculate theW&+age of E-‘/E. However, it is 

more convenient to consider the average of the natural logarithm of the energy ratio that is, log. 
(EYE’ ). This isdue to the fact that, since the per cent loss in energy is on the average the 
same, the neutron’s energy decreases in successive collisions, as shown in Figure 31. In each 
collision, it is the log,E rather than E which changes by a relatively fixed amount. Evaluation 

of the average-of log .(E/E ’ ) proceeds as follows: 

‘, 
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After some algebra, this reduces to: 

< z 1 AW2 log A+1 
2A “A-l 

For A>>l, this can be reduced to ,< _” (ZA-$/A a or 5 -z Z/CA+?. 

Figwe 30. Neutron energy diseribueion after single elastic scattering. 

ENERGY AFTER COLLISIONS I 1 2,s ,4 . . . . . . INITIAL 
ENERGY 

Figure 31. Neutron energy after successive collisions. 
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Yhe average logarithmic energ:,decrease per collision, [, is 0.358 for carbon {A=12). For 
hydrogen, < = 1 = average loge E/h so that E ‘/E is, on the average, l/e. To reduce a li-‘Mev 

neutron to 0.025 ev (thermal energies) by collisions with hydrogen, one would require v 
coIlisions with: 

y = log (E/E ‘1 = Iog~f1m0.025f 

log,&--~) * 5 
= loge 4 * 10’ = 13.5 

For carbon, since 5 is 0.158, about 17.5/O. 158 OP 110 collisions would be required. 

6.2 NEUTRON DISTRIBUTION FROhf POINT SOURCE 0 EXPERIMENTAL METHODS 

Knowledge of the nature of the process of slowing down of neutrons by collisions is essential 

in the treatment of most problems in which neutron fluxes are introduced into media. Perhaps the 
simplest question to be answered is: “Given a point source of monoenergetic neutrons, what is 

the steady state spatial distribution as a function of energy?” The answer will be basic, since 
any source distribution can be considered a superposition of point sources. 

* 

Suppose there is a radium-beryllium neutron source in a Iarge tank of water. For hydrogen the 

scattering cross section is particularly large ae low energies so that a l-Mev neutron will do most 
of its traveIing between the first few collisions, as shown qualitatively in Figure 32. The distribu- 
tion of neutrons from the source in water can be investigated by using detectors sensitive to 
different energy neutrons. Materials such as indium, rhodium, or iodine, each of which has a strong 
resonance for one particular neutron energy, can be used as detectors for that energy, provided 

that the neutron absorption corresponding to the resonance level results in rhe production of radio-- 
activity. Figure 33 sketches the cross section versus energy curve for indium. The reference given 
with the figure contains further details and bibliographies on activation of such materials. When 
possible, the detectors are made into foils. Elimination of the effects of thermal neutrons (since 
most of the detectors, in addition to being responsive to particular resonance energy neutrons, are 
generally responsive to thermal neutrons as well) is accompiished by surrounding the detector with 
cadmium. The effect of cadmium may be seen by inspection of‘its cross section versus energy 
curve, the broken line of Figure 33. 

Figure 32. Mean free path decreases as energy does in hydrogenous materials. 
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Figure 33. Cross section versus energy curve for indium. 

Returning to. the neutron source in the tank of water, it is apparent that the investigation of 
the distribution’ of 1.44-ev neutrons (indium resonance) may be made* by placing indium foiIs 

sandwiched between cadmium foils at varjous positions in the tank. The degree of activation of 
the indium (taking into the account the decay of tadioactive indium during the period of exposure) 
in the various positions is proportional to the density of 1.44-ev neutrons at those positions. If 
the cadmium foils were removed and the difference between the activation of the bare indium foil 
and the activation of the sandwiched foils (Cd-In-Cd) were computed, then the relative densities 
of thermal (cadmium) neutrons can be determined for the various tank positio s. The spatial 
disttibutibn of ,” 3Eev neutrons can be determined using an iodine detector. P Putting all these 
curves together yields the radial distribution of the density of the various energy neutrons in the 
water, as sketched on Figure 34. 

l For details see .Rc-U-Be Neutrons in Wcter* by J. 11. Rush in Pbye. Rev. ?S:871(1848). 

t For iodine reconance see Pbye. Rev. 71:174(1@47). There ame cppcrcntxy two reaonence lerelc, 

," sa or aIvn2: ra 01. 
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Figure 34. Neutron source in water. 

6.3 DISTRIBUTION OF NEUTRONS FROM POINT SOURCE - CALCULATION OF r2av 

Consider a point source of neutrons of energy E, located in an infinite homogeneous medium. 

The neutrons are slowed down by collisions after leaving the source. Consider all the neutrons of 
energy E. How far away from the;ource are they on the average. 7 What is the average of the square 

of the distance from the source r sr? 

If a neutron Frn a zourre S Tdergoes successive collisions (Figure 35), with successive 

displacements of l,, c, la, l,, . ..I-. then the resultant displacement is: 

and the square of the displacement (To ij is: 

r 2 = 1: + 1: + 1: + ._. 1,” + 2(tl l rs +il *is + . . . +‘i’a *is + . ...) 

To obtain-the average of the foregoing expressioq we break the averaging into three steps (Figure 36). 
First, we average over the azimuthal angle $J keeping 4, the angle of scattering in the laboratory 
system, and the Iengths 1 constant. Then we average over 1 and finally over 4. The average over 
$J is accomplished by use of the theorem: 

Los (1,4)1+ = cos (1, 2) cos (2, 3) cos (3.4) (6-N 
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Figure 35. Typical neutron paths. 

\ I 
\ I 

~#PSCATTERING ANGLE IN LABORATORY 
SYSTEM 1 

Figute 36. Displacement vectots in newton scattering. 
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with cos (m,n) = cosine of angle between rm and ra 

This theorem may be provzd by considering 5 

be averaged by allowing 1 4 to rotate around 1 a. 

fixed. Then, with rs fixed, consider the vector r4~ 
Figure 37 shows the three vectors rI, $, and 1, 

arranged to form $ges of a tetrahedrzn. The base plane has been constructed by passing a plane 
perpendicukr to I 3 and intersecting 1 r at unit length. The figure is to be used in the averaging 
process where i4 is allowed to rotate about 1, so that the angle $ indicated on the diagram is to 
be varied from 0 to 2~ in the averaging process. Considering the triangles APB and BPC of 
Figure 37 it is apparent from elementary trigonometry that 

up = 1; AB = sin (1,3); PB = cos (1,3); BC = PB l tan (3.4) = cos (1,3) tan (3,4) 

PC = PB/cos (3,4) = cos (1,3)/cos (3,4) 

The quantity (AC)2 can be found by use of the cosine law in triangle APC and in triangle ABC. 
Equating these two values &res: 

coca2 = (APP + (PC)2 - 2 (AP)(PC) cos (1,4) = (AB)* + (BC)’ - 2(AB)(BC) cos $J 

!Soiving this equation for COB (1,4) and substituting the trigonometric formulas for the various 
sides (AP, PC, AB, BC) yield the following: 

cos (1,4) = cos (1,3) cos (3,4) + sin (1,3) sin (3,4) cos $ 

As t’, rotates around rs the cos $J averages out to zero. The angle between these two vectors (3,4) 
being constant duting this averaging process means that the average of the cos (1,4) becomes: 

Los (1,4)1 po‘ = Los (1,3)3 *q ‘COS (3,4) (6-9) 

Figure 37. Averaging over azimuthal angle (4). 
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Now, in the above,Ahe vector ?a was kept fixed and F4 averaged. If r, is kept fixed and rs 
allowed torotate about la we find, rn a manner similar to that used in deriving (6-g), that: 

r cos (1,3)1 Iv = [cos (1,2)1 cn* cos (2,3) (6-10) 

However, since vectors i”, andzs are successive vectors the average of the cos (1,2) is a constant; 
that is, when ys rotates about 11, the angle (1,2) remains constant. Substitution of equation (6-10) 

into equation (6-9) proves the theorem stated in equation (6-8). The theorem may be generalized to 
apply to any succession of such vectors averaged over angle $.J (as shown in Figure 36): 

[cos (a,z)l +v = cos (a,b) l cos (b,c)cos (b,c)... COB (y,t) 

(6-11) 

(t,, q, 4, . . . i;: are successive vectors) 

Now consider the average over I. If AI is the mean free path, then the probability that I,, lies 
between In and la + dla is exp (-Ill/A,,). The average of In and Ius can be readily determined: 

(1) *v = #l exp (-l/A) dfl / [I” exp (-l/&l] = x 
0 0 05-12) 

(The subscripts ‘%I” have been omitted for simplification of notation.) The first relation of equation 
(6-12) is in a sense a definition, since the average of 1 is just the mean free path. 

Returning to the original equation for r”, we may now write the &uation for r* averaged over 
the $‘s and l’s: 

rel$~.v 
= 2q t 2 ““z t 23 + . . . 2h”, + 2 $A* cos (1,2) 

05-13) 

+ AlAa cos (1.2) cos (2,3) + . . . AsA, cos (2,3) + . ..I 

In the case of hydrogen, this calculation can be completed in an exact way. GeneraIly it isconvenient 

to make some approximations. Let us assume that it takes a large number of colfisions to produce a 
small change in energy. This will be valid for neutron collisions with heavy atoms (A>>l). The 
various angles of equation (6-13), (1,2), (2,3), etc., may take on all values from 0 to n; We must 
average over the various possible angles, recalling that these angles are the successive angles of 
scattering as measured in the laboratory system, angle &f Figure 29. As we have proved in equation 
(6-4), the average of the cosines of these angles for isotropic schtterers is 2/(3A), a number that 
decreases with increasing A. This fact may be used to advantage if we note the coefficient of A, in 

(6- 13): 

2 [A1 + Aa cos (1,2) + ha cos (1,2) cos (2,3) + . ..I 

Since successive terms when averaged over sea ttering angles, will have increasing powers of 2/(3A), 
they will diminish rapidly in the approximation being considered, so that the various ks occutring in 
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successive terms may be repraced by x1 itself. This is valid if the ks change very little between 

successive collisions. In this msnner, the coefficient of A1 is approximated by: 

2A 
2[hl txlc +x1c2 + . ..I = 1; 

2 

1-c 
C=3A 

Consistent with our approximation, the finite series has been considered to be infinite. It can be 
readily shown that the error becomes negligible for A >>l (and absorption processes are very few 

compared to scattering). Substitution of this approximation into (6-U) yields 

2q 23 
(r”>, =Fc + - 

2x2 2 ;.A2 
t- +...A =- 

1-c 1-c 1-c 1-c I.=/ 

where C = 2&A) as before. The sum may be written as an integral if the change of energy is small 
for each collision: 

Number of collisions between E + AE and E = 
log (E + AE) - log E 

5 e 
= wm 

ThUS 
r2 2 

a?? =- 
1-2 l"1 

3A 

(6-14) 

The integration variable is primed to distinguish it from the limits. 

In (6-14) 6;s the average decrease in the natural logarithm of the energy per coIIision, defir&in Jo 

equation (6-7). The dependence of the mean free path on the energy has been noted by writi& 
A’(E). E. is the initjaI neutron energy at the source, and E is the energy of the neutroa at thC Y 

particular position f. Equation (6-14) the average displacement-squared for neutrons of energjt E 

when the scattering is done by heavy nuclei. 

It is often convenient to use logarithmic variables, in which case the average of the displace- 

ment-squared is: 
lo3,Eo 

raw= ~+I J A! (e’jdE’ withe’ t1og.E’ 
-2 log,E . (A”1) 

(6-15) 

As was mentioned previously, the formula for (19, can be derived exactly. The result 
kicerca Sci. 7:13(1936)1 is: 

r2av = 2X’(O) t 2ha (a) + 2 7 Aa (X)dX + 2NO) j )L(Xk*x'2 ~ 
0 0 

+ 2~O)~a)e~/2 + 2Na) j E(x)e- c-x”2 dx 
0 

6 16) 

t 2 j A&)&l ~~(u*x)e-~/2dx 
J.' 
Y 0 0 

where x =log, (Eo/E’); a = logJEo/E) 
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As in equations (6-U) and (6-14). the energy of the neutrons at the source is E. and the formula 
predicts the average of the displacement-squared for neutrons of energy E. E ’ is the variable of 
integration and disappears upon substitution of the limits. 

Referring to Figure 18$ page 37, we note that the cross section for neutrons inhydrogen is 

very nearly constant (* 21 barns) over a wide range of energies - from about 1 ev (where the effect 
of chemical binding forces becomes negligible) to about 10 kev. For slowing down in this region, A 

is constant, and the formula (6-16) can be reduced to the form: 

r 2 ov = f(Eo) - 6A210gcE G-17) 

Using Ra-Be as a neutron source in a tank of water, we find the following data experimentally: 

Slowing to Rh resonance (1.28 ev): r 2W= 276.6 cm2 

Slowing to I resonance (37 ev): ram = 262.2 cm2 

It follows then from equation (6-17), which is valid in this range of energies, that: 

[(r’>., for Rhl - [(r2)- for 11 =6x2 log,(37/1.28) = 14.4 cm2 

from which A2 = (14.4/20.2 cm 2 or A= 0.84 cm. This is an average mean free path, to be compared with 
appropriate averages of differential data. Recent data on Ra-Be neutrons in water 
(1948)) indicates that r 2aV 

fI=hys. Rev. 73:271 
for indium (1.44 ev) is 272 cm ‘. 

6.4 DISTRIBUTION OF NEUTRONS FROM POINT .SOURCE - AGE EQUATION 

In the last section, we have discussed one description of the space distribution o’f neutrons for a 

a point source in an infinite homogeneous medium. In this section, we shall derive an expression for 

the neutron “age” rather than the average of the displacement-squared. This ‘%ge*’ is likewise a 
distance-squared. (The somewhat misleading nomenclature results from the analogy between the present 
problem and heat flow.) 

As before, neutrons with energy E0 are fed into the scattering medium. Our interest is in the space 

distribution of neutrons of various energies. Accordingly we define a steady-state neutron density 
function n(x,y,z,b ) such that nlx,y,t,c) dxdydzd E is the number of neutrons in the volume element 
dxdydz, with the logarithm of their energy between e and L + de (where, as before, f = log,E). Consider 
the volume element and the neutrons in it in the given energy range. Per unit time, this volume element 
v&~receive neutrons in this energy range from two sources: (1) from diffusion of neutrons of this energy 
&m. ou#de the volume element and (2) from higher energy neutrons in the volume element which have 
the&~ wrgy degraded into the given energy range. 

From the first source, diffusion, the contribution to the neutron population in the volume element 
can be calculated using methods of kinetic theory. The diffusion coefficient is: 

(6- 18) 

where kis the mean free path for scattering, (cos 41, the average of cosines of the angle of scatter- 

ing in the laboratory system, and v the neutron veiocity. A,is called the “transport mean free path.” 
‘2t.i~ the distance that a neutron would travel on the average in the direction of its initial motion after 

an infinite number of collisions, each collision resulting in an average deflection given by @OS $)* 
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and each collision being followed by one mean free path (A) movement. As shown in equation 
(6-18), At and h are related by the equation: 

At= 
x 

1 -(cos #J)## 
(6-19) 

For isotropic scattering, equation (6-4, since (cos &.v Ic 2/(3A), the relation betweeo the 
transport mean free path and the mean free path is: 

A,= h 
1- 1 

3A 

wbea A ‘>I, 1 \:(I +3A L, hA. As in kinetic theory, the neutron cutrent density S is related 

to the diffusion coefficient by: 

S = - D n (ncutrons/cms/sec) s-20) 

This is a vector equation, wirh S in the direcrion of rhe gradient. Notation is standard: 
n * grad a = ix@n/ax) + f(&&) l ix{&@) with i , i 

x Y 
, and i, the unit vectors in the x, y, 

and z directions. +nsider the face dydx of the volume element at (x,y,z). The neutron current 
out of this face (in the negative x-direcrioa) is D@n/ax lso that the number of neutroos per unit 
time in the energy rauge between E and C+ dC. going out of the face dydz at (x,y,z) is 
@n/ax) dydzdfz _. At the opposite face at (r + dx, p, 2) the number of neutrons per unit time 
in the energy range da coming into the volume element(negative x-direction) is: 

D (?!!.+ ar, dx) dydzd f 
a, ax 

The net gain of neutrons per unit time in the volume element is thusD@ f/ax”> dxdydxd 15 . 
Taking other pairs of faces and adding up, we obtain: 

Neutrons in energy range between 
E and & + dt diffusing into the = D ‘n dxdydzd e-21) 

volume dxdydz per unit time 

with ’ the LapIacian =,ca2/axq + (at/y) * <a*/w). 

Now consider the other source of neutrons, those in the volume element which are slowed 
down to the proper energy range (between f and S+ de ). The number of collisions of a neutron 
in unit time is v/h If this is multiplied by the airerege change in t per collision, that is by &, 
the result &/A is the loss of z per unit time. Representing values of E as points on a straight 
line, Figure 38, a neutron can he visualized as moving down the t line with a velocity &/A 

(a= LOG&) 

NEUTRON PROCEEDS DCMN Q AXIS WITH SPEED= (v/x 

Figure 38. Slowing down of neutrons: appearance on E axis. 
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(velocity meaning loss ofe per unit time). At the point 5 the number of neutrons in the volume 
element dxdydz which move out of the range of energies (between E. and E + dt) per unit time 
is: 

b W/ %31 l a(x,y,z,r) dxdydz 

where the functional dependent of v and hon &has been indicated. The number per unit time 
moving into the top of the enagy range at E. + dlis: 

[tfv(c+ dq/ A( E_+ dE)l ; , 

I 

& n:i ;;i!$; ] &dydt 

The net increase per unit time of neutrons in the range de and in the volume elemmt dxdydz is 

obtained by &acting outgoing from incoming: 

Net increase = - a cc* 4~y,z,&)3 - dxdydzd6 
a& U4 

(6-22) 

Combining equation (6-22) with equation (621) gives the slowing down differential eqnation. 

Since we are concerned with the sqady-stare (time-indcpeudent) neutron density, the sum of 
equations (6-21) and (6-22) must be zero: 

S-23) 

with D =, A-v 

3[1-bs@I,] 
= Q/3 

A= NE), v =+I, n =4~,5G =log,E 

Equation (6-a) can be transformed into the same form aa the classical hent,conduction 
equation by the introduction of new depataent and independent variables. The dependent variable 
is the so-called “slowing down density” defined aa: 

The name is descriptive. As pointed out earlier. the loss off per unit time per neutron is &/A 

(Figure 38). MuMplied by the neutron density n, this is then fhe .&al ioss i&per unit time per 
unit volume per unit energy interval or, expressed difkently, dre number of neutrons per uuit 
volume per nnit time crossing any value& on the6aris. In the steady state, if q is integrated over 

all space, the number of neutrons crossing any value c pa unit time is certainly the number of 
neutrons fed into the system pet unit time, i.e ., a a~nstant Thus ~q(x,y,z,&)dxdydz = constant for 

all E . If q is substituted into efquation (6-23), ti;‘“” is: 

(6-25) 

This is a simpler form thau equation (6-23) since the dScrcn&al operators only operate on q. The 
independent variable can be changed to fir&a simplify the fona. Let us introduce the independent 
variable 7 the *‘age” (often called the”Fermi age”): 
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7’ 1 
3&l - cos rb),,) 

Op( CJ)d&’ 

It is apparent that Thas the dimensions of length’. Differentiating q with respect to C 

Substitute into equation (6-25) and cancel out the common factor. The result is the “Age Equstion”: 

(6-U) 

with q and rdefined by equations (6-24) and (6-26). 

A considaablc advantage is secured by these transformations in that equation (6-27) is identical 
in form to the heat conduction equation: 

Thus q is analogous to tern- and 7to time. Just as temperature will decrease with increasing 

time (no heat sources), so will the neutton *%om” with energy*&o lose its energy&with increasing 
“age” 7; This can be seen by inspection of equarioa (6-26), where 7-0 as t-’ B, and 7 increases 
with decrease in E (or Tincreases 8s the “time since bii” iscfcases). 

Let us npply the age equation to the point source problem. Given a point source of neutrons with 
energy E. in sn infinite medium; what is the density of the neutrons as a function of E and position? 
First solve the age equation for q, borrowing the corresponding solution of the heat equation: 

9” Q =- r’/4r WZ8) 
(4 my 

Identificatioo of Q ss the source strength, that is, the number of neutrons with energy E ** 
introduced into the system in uuit time, follows by integrating q over aLII space using spherical polar 
coordinfues: 

q* 4 Wr%ir =4~[Q/(4V?)“/s) $ e”a~4rradr = Q 

Let us examine the for& of the solutions equation (6-28). In Figure 39, a sketch of q versus r 
for large and small values of 7shows that as E decreases from E,(i.e., as 7increascs), the space 
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Figure 39. Point Source Solution of age equation. 

distribution for the energy E gets broader and broader. This is as one would expect. Fast neutrons 
are dist&ated close to the source, and slow neutrons are spread out, (Note that the aren under the 
CIvITea betmeen r and r + dr in the figure does not give the number of neutrons per unit time arriving 
in that inter&. 4 factor 4nr’ must be intro&tced. In fact, 4nksq dr is the number of neutrons per 
unit time arriving in the apace interval between r and r + dr.) 

‘In. problem 5 at the end of this chapter, the average of r * is calculated from q. The result, 6 7; 
is-++r to that obtained in Section 6.3. 

PROBLEMS 

1. Consider the collision of neutrons .with beryllium. What is the average angle of scattering 
observed in the laboratory frame’ of reference? In the center of gravity system? 

2. Calculate &for H’, He4,Be@, O”, Ulss. In each case, how many collisions will be needed to 

reduce n neutron’d energy from 1 Mev to 1 ev? 
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3. Suppose a point source of fast neutrons is placed in a large tank bf water. At various di%ances 

from the source, indium foils (sandwiched between cadmium foils) sre exposed to the neutron flux and 

thereby activated. Exposure times and foil areas are constant. The following data are obtained (after 
correction for activity decay, etc.): 

r(an) 6 8 10 12 14 16 18 20 22 24 26 28 30 
A&) 890 550 302 180 101 61 40 26 18 11.5 8.7 5.7 4.0 

r is the distance from the source to the indium detector, and A is the activity in counts per minute of 
the indium detector (activity is due to 1.44 ev neutrons). From these data, iakulate (r’),. (N.B. 
The activity A is not proportional to the number of neutrons in the interval between r and r + dr.) 
Values of A for larger r can be determined by semilogarithmic extrapolntian. 

4. Consider n substance in which h is co&ant. In this case, what is the relation between the 

age T and the actual “time from birth”? 

5. Using the point source solution for q, find (13, in terms of z Apply this result to the 

hydrogen problem discussed in the sections before and after equation (6-17). Show that the samevalues 
are obtained using age theory as in the vector averaging process. 
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CHAPTER VII 

THE DISTRIBUTION OF SLOW NEUTRONS IN A MEDIUM 

7.1 THE DIFFERENTIAL EQUATION FOR SLOW NEUTRONS 

Calculation of the distribution of neutrons of various energies in a medium involves two dis- 
tinct problems. First, there is the slowing down problem dealt with in the last chapter. The 
neutrons do not continue to be slowed down indefinitely, for the nuclei they collide with are not at 
rest but have vibrational energies corresponding to their temperature. Eventually the neutrons come 
into thermal equilibrium with these nuclei and show a Maxwellian distribution* corresponding to 
the temperature of the jmedium. Clearly the problem of the spatial distribution of these slowed down 
or thermal neutrons is quite distinct from that of the distributions of neutrons being slowed down 
and must be handled by different methods. 

In approaching this second problem, we ask, “Given a source of thermal neutrons, what can be 
said about their stationary state distribution in a medium?” We seek a differential equation as our 
description. Let n(x,y,x) be the density of thermal neutrons at x,y,x. As in the derivation of the 

age equation, we consider a unit volume. There are three mechanisms by which the number of neutrons 
in this volume element change with time: (1) diffusion into or out of the volume element, (2) absorp- 
tion + or capture of neutrons in the volume element, and (3) generation of thermal neutrons in the 
volume element by the sIowing down of fast neutrons to thermal energies. The first mechanism will 

yield DV2n neutrons per unit time per unit volume, as in deriving equation (G-21) of Chapter VI. 
The second mechanism decreases the neutron density per unit time by -n/e, where ,6~ is the mean 
time for absorption or capture. The third is just the slowing down density q evaluated for thermal 

energies, since q (e) is the number of neutrons per unit voIume per unit time arriving at a particular 
logarithmic energy e. To emphasize that q is to be evaluated for thermal energies, we write qr. 
Adding the three contributions together gives the differential equation for the time rate of change 
of the neutron density: 

DV2n - (n/e) + qv = an/at (7-l) 

where n(x,y,z,t)dxdydt is the number of thermal neutrons in the volume element dxdydz at time t, 
(n/@dxdydz is the number of thermal neutrons absorbed per second in the volume element dxdydx 
at time t, and qrdxdydz is the number of thermal neutrons created (by slowing down) per unit 
time in dxdydz. It should be remembered that qr is a function of x,y,x which can be determined 
from the ag equation with the proper boundary conditions. Since D 5: h,v/3, equation (7-l) can 
be rewritten for the steady state: 

3 3% 
Van --n +--cl 

xt VO xi? 

BY defining: 

A = V$ = “capture mean free path” 

L = /ATj “diffusion length” (7-2) 

*Number of neutrons with velocities between v and Y + dv i.s proportional to v2erp(-mv 
2 

,&kT)dv. 
*This mechanism should perhaps also have been considered in the slowing down process. But r?u+re?;g 

orders of magnitude are such that in the slowing dam the consideration of atiorption is usually a 
refinement, here it is a necessity. 

68 
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the steady state equation becomes: 

3q, Van -+ +-=(I 
A! (7-3) 

Foe a point source of slow neutrons (q, = 0 except at r = 0 where qT is a delta function), 

the equation reduces to: 

V2n - (n/L2) =0 (7-4) . 

The solution is spherically symmetrical, so equation (7-4) reduces to the radial equation: 

1 d r2 dn _ n =. 
7-z z ( ) ZTa (7-5) 

Let u = nr. The equation becomes u” - (u/L”) = 0 where uQ = d2u/dr2. Solutions are u = exp 
(ML). The boundary condition that n-O as r - 0~ eliminates the positive exponentia1, so the 

solution is: 

-r/L 
ll= A+- 

The constant A can be evaluated by considering a small sphere enclosing the source at the origin. 
The neutron current, equation (d-20) of Chapter VI, is -Dvn = -Ddn/dr = -DAe-vL [ -l/(Lr) 
-l/r”] . Multiplying this by the area of the sphere 4nr” and letting r-0 gives 4sDA. This is the 

source strength Q.‘ Thus A is Q/(4sD) or 3Q/(4u$v). Th e complete solution to (7-3) for a point 

source of Q SIOW neutrons per unit time is: 

n -?5L e’ r/L 

enX,r ( ) r 
(7-a 

The solution may be checked by substitution in equation (7-5). 

The point source solution is particularly important since any source can,be’ represented by 

a proper assembly of point sources, and the corresponding solution is the superposition of these 
point source solutions. 

To solve this equation for a Point source of fast neutrons we set up an integral over a 
distribution of thermal neutron point sources all over space that arise from the slowing down of 
the fast neutrons (see Figure 40). Now we can find the density of slow neutrons at a distance 
r from the point source of fast neutrons as follows. In any volume element dV, a distance ; 
from the point source of fast neutrons, there are q, dV thermal neutrons per second being pro- 

duced by the slowing down process where qT [see equation (G-28)] is: 

4, = 
Q .-p2/47 
(4r#f' 

with 7 = age for thermal neutrons, 

Q = fast neutron source strength (neutrons/second). 

The volume element dV is expressed in spherical coordinates, dV = P2dP sin B d 8 d+, and the 
polar axis (0 = 0) is taken to pass through the point at which we are finding the thermal neutron 
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PROBLEM: WHAT IS DENSITY OF THERMAL 

RMAL NEUTRONS 
SECOND MADE IN dV 
LOWING DOWN PROCESS 

._ 

c- FAST NEUTRON SOURCE 

Figure 40. Point source of fast neutrons. 

density (see point P in Figure 40). Now point P is a distance lp’ - f 1 = /p2 + r2 -2g cos 8 
from the source q, dV. As a consequence, the density of thermal neutrons obs.erved at P from 

this soutce is given by equation (7-6) with the appropriate source strength and radial distance 
substituted: 

Adding up the contributions from all sources means.we integrate over dv. Substituting for q,, 

1; - ??I, carrying out the integration over the azimuthal angle 4 and changing variable /.L = cos B 
finally gives: 

(Thermal neutron density at distance r from fast neutron source of strength Q) 

a, t1 

34 

SI 

-pa/47 e --I/p" + A2pq-L /L 

n(r) = e. I 
s/2 

.4p2 + r2 -2pp 
P24+ (7-7) 

2X,v(4n~) 
p=o /A=-1 

In equation (7-7) X, v, 7, and L are the transport mean free path, velocity, age, and diffusion 

length for thermal neutrons. 
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FREE SPACE 

Figure 41. Neutron density behavior at boundary surface. 

7.2 BOUNDARY CONDITIONS FOR THE SLOW NEUTRON DIFFERENTIAL EQUATION 

In order to solve the slow neutron differential equation, the behavior of n or some function of 
n at the spatial boundaries must be known. Consider a finite convex (i.e., not re-entrant) medium 
with a neutron source in it and free space everywhere around it. What can be said of q or n at 
the bounding surface? To a first approximation, q or n can be taken equal to zero. This is made 
somewhat pIausible by the argument that free space acts as a perfect sink; namely, it absorbs 
all neutrons and returns none. It, therefore, acts as such a heavy drain on the neutron density at 
the boundary that no density can be maintained there. 

Actually it can be shown that a more proper boundary condition is that n or q vanish at 

a surface (2/3)X, away from the bounding surface,* where X,is the neutron transport mean free 

path in the medium. Consider a plane bounding surface, Figure 41. The neutron density in the 

neighborhood of the boundary can be approximated by a linear function of the distance: n = 
p( o t x). This can be shown to satisfy equation (7-4) for a one-dimensional situation. The flux 
at the bounding surface is just DVn [see equation (6-20)] in the negative x direction. Since the 

gradient of n is just dn/dx, the flux is D(dn/dx) = D l p = (X,v/3)p. The flux can be calculated by 
another means; In Figure 42, it is apparent that the probabrlrty that a neutron coming from the 
unit volume AV will reach the surface at point P is exp(-Xm). Moreover, the fraction of the 

r, 
total solid angle included between e and 0 t de is sin e de/2 [see equation following equation 
(6-5)]. Since the volume AV is the source of nhV/(x 4 v neutrons per unit time (an equal number ) 
of neutrons return to the volume per unit time in the steady state), then the total number of 
neutrons crossing the boundary per unit time and coming from’the volume AV is: 

a2 

f F 

-et- Xsin e de/ZXnvAV/hJ 

C= 0 

.A more refined derivation #$ves 0.71 ht. 
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FREE SPACE SCATTERING MEDI 

Figure 42. Neutron flux calculation at boundary. 

Substituting for n [ = p( a + x)] and rearranging this equation becomes: 

77/z 

(I/2) 
s 

p( at x)(v/kt)e-x/(x,cos e, sin 8 de AV 

e=0 

Consider the volume to have unit area perpendicular to the x axis and depth dx. Then integrating 

the foregoing expression over x would give the total number of neutrons each second coming to 
the surface from an infinite column of unit cross-sectional area perpendicular to the surface. But 
this is seen to be the flux or the number of neutrons crossing unit area of the surface per second, 
provided, of course, that everything can be assumed uniform perpendicular to the x direction. Thus 
the flux is: 

m 77/z 

(l/2) 
I s 

p( at x)(v/h,)e -x/(&cos 6) &, e de dx 

Change varial#es to p tcos e Ld i:tegrate first over x, then over p The result is (vp/ZX ) 

[( A&) + &/3)1* E 4 uating this to the previous result for the flux, ph,v/3 and solving ior a 
gives a = (2/3)X, But ais the x intercept of the neutron flux. Therefore, we have shown that n 
vanishes at a distance (2/3)X,outside the bounding surface. 

It must be noted that this boundary condition really describes n at the boundary, not beyond 
the boundary. In particular, the boundary condition does not mean that n vanishes at x = -(2/3)h, 
and is negative beyond that point. What has been proved is simply that the demi ty at a 
bounding surface behaves as though n is a linear function of X, vanishing at, 36 = 

-(2j3)X,. 
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7.3 THE DIFFUSION LENGTH IN WATER AND GRAPHITE 

To be able to use the slow neutron diffusion equation (7-3), it is necessary to know the 
vaiue of L, the diffusion Iength. Measurement of L for water can be accomplished by placing 
a water tank on a pile (or on the thermal columnof a pile), as in Figure 43. Provided diameter 
and height of water are very much greater than the diffusion length itself, the problem may be 
considered to be one dimensional. The bottom surface is a plane source of thermal neutrons. 

Equation (7-3) becomes: 

d2n/dx2 - (n/L2) = 0 

(7-S) 

where x is the distance from the bottom of the water tank. Measurements are made with and 
without cadmium separating the piIe and water tank to determine (by subtraction) n for thermal 
neutrons as a function of x. The exponential decrease of n with x as predicted in equation 
(7-8) is measured and L determined for water. The value is Llater = 2.8 cm. If a block of 
paraffin is used, the result is the same, showing that the absorbing mechanism in the case of 

water and paraffin is the same; namely, hydrogen capture. The effect of carbon or oxygen absorp- 

tion is negligible compared to hydrogen. 

h,R- L 
L* DIFFUSION LENGTH 
(L~o-2BcM) 

x= h 

WATER 

d ( REMOVABLE 

Figure 43. Measurement of diffusion length in water. 
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There are other ways to measure L and related constants for water. Some are described in 

a paper by Fermi and Amaldi, Phys. Rev. 49:899 (1936). The diffusion length is dependent upon 
temperature. For water, the relation is: 

L = 2.64 + 0.0061 T 

(L in cm, Tin “C) (7-9) 

As shown in equation (T-2), the diffusion length is related to the mean free path for absorp- 
tion c ‘1) and the transport mean free path (x2. Knowing L and A,, we can calculate A, or vice 

versa. 

For a substance such as graphite, the diffusion length is so large as to make the method 
just described impractical for determination of L. The one-dimensional approximation will not be 
valid when L is of the order of the dimensions -of the medium. As a consequence, the three-dime* 
sionai probIem must be solved. 

The physical arrangement is shown in Figure 44. A fast neutron source is at point P (u,u,O) 
on the bottom surface of the graphite pile. The height of the pile is much larger than the diffusion 
length, whereas the edge dimensions **a” are of the same order of magnitude as L. The slowing 

down equation, V2q - @q/a,) = 0, can be solved for this arrangement by use of Fourier 

analysis (same methods as used in solution of heat conduction problems). The result is: 

q = (4/a2)(Q/d4nT) e-z2/47 i e-a27(r a+ l 21/u sin (7&a) sin (nry/a) 

*,s '1 

(Q = source strength = fast neutrons/set) ( 7- 10) 

h C FAST NEUTRON 
SOURCE ( Ro-Be) 
IS AT ( U,u,O) 1 

hs> L 

Figure 44. Measurement of diffusion length in graphite. 
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Evaluation of 7 by experiment using a Ra-Be neutron source shows that the source has three 
weli-defined neutron energies, giving three superposed distributions. The following table gives 
the age values for the three components in graphite at different energies and the percentage of 
each component present. 

TABLE 2 - Ra-Be NEUTRONS IN GRAPHITE 

PER CENT 7 ( IND~IJU RESONANCE). cu2 TOODINE RESONANCE). Chf2 

15.0 130 54 

69.3 340 268. 
15.7 815 736 

Such data are sometimes given in terms of the range ra , which is equal to 2 tiI- 

From the data of Table 2, it is apparent that at 30 cm or so from the source, q will be very 
small. In this case, the “source” term in the slow neutron diffusion differential equation (7-3) 
will be small. The slow neutron density n will be a solution to equation (7-4), i.e., 

V2n - (1/L2)ll = 0 

at such distances from the source. Because of the boundary conditions (the slow neutrons are 
produced by slowing down from the Ra-Be source), the solution is assumed to have the form: 

co 

n= 
c 

n ~ (2) sin (nrx/a) sin (77sy/a) 

qs=1 

Substituting this into the differential equation gives an equation for nra (2): 

d=%l 
dza- [ 

--$(r2+s2) +-& 1 nrs =0 

This equation has a simple exponential solution, exp (-z/b-), with b* equal to the reciprocal 
of the square root of the expression in brackets. Thus, the solution for n is: 

n=E ewdb, 
r,s=1 

sin (vrx/a)sin (*y/a) 

with (I/b,,‘> = (v2/a2) (r2 + s2) + (l/La) 
(7-11) 

It can be seen that as r and s increase the exponential damps out rapidly with increasing z. 
Experimentally it suffices to compare activation measurements by slow neutrons in such a column 
for the r = s = I component: 

n o: ,-4/b*% sin (7da) sin (vy/a) 

with (I/baa) = J(29lVa9 + (l/L’) 

(7-12) 

For a’ typical graphite sample, the constants are: density = 1.551 gm/cm’; br, = 28.38 cm; 
a= 150.49 cm. Since the neutron density does not vanish exactly at the edge, we must add 
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2 x(2/3) X, to the 150.49 cm, making a = 153.29 cm ( Xt= 2. I cm). As L depends on density, it 
is conventional to reduce all values of L to the value L would be if the density were I.60 
gm/cm3. This makes it possible to compare directly different lbts of graphite tested in this way. 

In the following table, some of the results obtained in this manner for four common substances 
are list&d. 

TABLE 3 - DIFFUSION LENGTHS AND RELATED CONSTANTS FOR H,O,D,O, 
Be, AND C 

DENSITY. O/CM3 AtoMs/Cm3 L. CM l-=/at . CM 

H2° 1.0 0.0334 x t024 2.85 0.142 

D2D 1.1 0.0331 x loa4 100 0.80 

BE 1.8 0.1235 x 1O24 31 0.87 

C 1.62 0.0871 X lo=* 50.2 0.903 

The microscopic constants in problems such as those just described are usually two: us 
the scattering cross section, and Q~, the absorption cross section. These are related to L, , 
and h,in the following manner: 

Definitions of the different symbols are: 

(7-13) 

n = atoms/cm’ 

v = neutron velocity 

0 = mean lifetime for absorption 

(-+)ar = average of the cosine of the angle of scattering in the lab system E 
2/(3A) for isotropic scattering (A is‘mass number) 

h. = transport mean free path 
A = mean free path for scattering 

= absorption mean free path 
L = diffusion length 
N = average number of scattering collisions made per absorption 

7.4 THE ALBEDO OR THE REFLECTIVITY OF BOUNDING SURFACES FOR NEUTRONS 

So far in this chapter, we have outlined the methods of obtaining neutron distributions in 
media due to sources within them. However, neutrons are often introduced into a medium from 
outside. It is convenient to define a reflectivity, or, as it is called, albedo (“whiteness” in 
Latin), for a surface. It is simply the fraction of the incident neutrons eventually~returned or 
“reflected*’ from the surface. An albedo of unity means perfect reflection; an albedo of zero 

the 
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means perfect (black body) absorption.* 

Let us solve a typical problem. We shall calculate the albedo of an infinite plane surface 
for slow neutrons. But first it will be necessary to solve the foIlowing problem: “Given a medium 
bounded at x = 0 and occupying all of space to the right of this plane, what is the probability 
that a sIow neutron starting at a point d units distant from x = 0 will escape from the medium, 
. 
I.e., will reach x = O?” 

We shall do this problem twice, using two very different approaches. First, we shaI1 use 
the slow neutron diffusion equation and assume that the problem is one dimensional, i.e., that 
the neutrons move only in the x direction. The second method will involve the solution of an 
integral equation. 

Assume a point source of neutrons at x = d on the x axis. We must caIcuIate the fIux at the 
origin for unit source strength. This is precisely the escape probability, since the boundary of 
the medium is at the origin. The slow neutron diffusion equation is in this case: 

Vf w-f-- 
L= 

=o 

(everywhere but at x = d), and since this is a one-dimensional problem, the solution is: 

n = Ae -xfi -Ae’x/L 

for 0 <, x < d, assuming the boundary condition n(x = 0) = 0. For x > d, n = Be -=iL. These two 
solutions must join at x = d (see Figure 45) so that n is continuous and the gradient dn/dx 

Figure 45. Joining solutions at discontinuity. 

has a finite discontinuity. To find the amount of this discontinuity, integrate the complete 
diffusion equation (7-3) throughout a small “volume” surrounding the source: 

d+e dfe 

j [s - ;=] dx =-j- +$m dx 

d- d d-E 

The first term is [dn/dx] f + z , the discontinuity in dn/dx. The second term vanishes as 

E -0, for n must, for physical reasons, be a continuous function of x. The last term is simply 

*See Ferai*s paper on the motion of neutrons In hydrogenous substances in Rieerca SC%. 7:lS (1936). 



76 AECD-2664 

-Q/D where Q is the source strength at x = d and D is the diffusion coefficient X,v/j. Thus, 
the conditions on n and dn/dx at d are: 

(Continuity of n) Ae”/’ -Ae ‘d/L = Be -d/L 

(Di*ontintiy Of -(A /Lje-d/L +/L)e+d/L 

-Q/D in dn/dx) 
= -(B/L)eVdiL t (Q/D) 

Hence A = -LQe -‘IL /2D and B = LQ (1 - e-2d/L). 

The flux at x = 0 is then D (dn/dx)l,, = QeWdjL * and for unit source strength it is simply 
e -d/Ls This gives the pro bability, p (d), that a slow neutron at a distance d from bounding sur- 
face will eventually escape from the medium. 

Before we use this result to find the albedo of such a one-dimensional medium for neutrons 
incident on the boundaty from the outside, let us do the problem in another way. In addition to 
the methods of diffusion, there is a more exact and rigorous way to attack pro$lems of the type 
being discussed. To fiid the neutron density in a particular volume y at a time t, one could 
investigate the density of neutrons that are moving toward I and are in the other volumes at 
various earlier times t’ so that (considering their velocities and distances from Y) they would- 
be in r at the time t. The neutron density at v at the time t could be expressed as some sort 
of sum or integral of these other neutron densities, We ,yuld be led to an integral equation in 
the neutron density n. 

Thus in addition to the differential equation method of solving diffusion problems, there 
is an integral equation method, too. It would be well to stop a moment and compare the relative 
merits of the .tv approaches. In setting up the diffusion differential equation, it had to be 
assumed the quantities such as n, dn/dx, etc. vary slowly with respect to the mean free path. 
of the diffusing particles. Further, it was assumed that densities of particles were large enough 
so that speaking of quantities such as dn/dx made sense. In particular, one would not expect 
that the solution of a problem like the following by diffusion methods would give physically 
true results: ‘*Find n(r, 6, 4 ), tk density of slow neutrons in a sphere of radius X/2, if there 
is a point slow neutron source at the center of the sphere and X is the mean free path of slow 
neutrons in the medium of the sphere. ” There are, however, no such restrictions on the use of 

integral equation methods. No assumptions about the variation of dn/dx with distance, etc., 
need be made. Integral equation methods are more general and usually more difficult. It often 
becomes expedient to do diffusion problems by means of differential equations and proper 
boundary conditions first in order to get a rough idea about the function in question. Then the 
more exact solution can be obtained by means of an integral equation. This is the procedure we 
shall follow here. We have obtained p(d), the probability that a neutron d units from the boundary 
of a one-dimensional medium will escape it, by means of the diffusion differential equation. Let 
us now apply integral methods. 

Consider a neutron at d. As it leaves d , one of two things may occur. It may go to the left 

(toward the boundary), or it may go to the right, each with a 50% chance. If it goes to the left, 
it may escape before it suffers a collision, or it may experience a collision. The probability 
that a neutron at d will escape without a collision is, therefore, the product (l/2) x e -d/h 

where X is the mean free path between collisions (mfp for scattering when 0; > > c~). Hokever, 
a neutron may escape even if it suffers a collision. Suppose the neutron suffers its first CoIlision 
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at x and that n(x) is the probability that a neutron from d suffers its first collision at x (either to 
right or left of d). Now fi(x) is the probability that a neutron at x will eventually escape. The 
probability p(d) that a neutron at d can escape is made up of two terms, the first of which is the 
probability of escape without collision, and the second is the sum of all possible products of 
v(x)~( x), i.e., probability that the neutron is scattered to x times the probability of escape from 
X: 

p(d) =+ -&IX + c 
all x 

s(x)p(x) 

It is assumed in the equation that there is isotropic scattering in the lab system, i.e., 

that +(x) depends only on x and not on the side from which the neutron arrives at x. In detail, the 
sum should be written: 

d co 

L 
I- 

(7- 14) 
2 

0 a 

where the first integral gives the probability that a neutron starting from d will go left, suffer a 
colliSion at z, but will eventually escape, and the second integral gives the probability for the 
same thing with initial motion to the right. N in equation (7-14) is the ratio u. / U* given in equation 
(7-13), the average number of scattering collisions made per absorption. The probability that the 

collision at x is a scattering is a,,/(~, +u~) or N/(N + 1) 2’ (N- 1)/N for N > > I. Simplifying 
equation (7-14) by combining the integrals and adding the no-collision escape probability gives: 

m 

p(d) z; e-d/A + -$- 
s 

N-l 

0 

e-lx-dl/h$P(x) DrT 
(7-15) 

Since the solution of the differential equation gave p(d) =,-&IL , we therefore try p(d)=AeWa 
as the solution of this integral equation. Doing this, we find that: 

JF -a 
p(d) = ;/= e AC (7-16) 

From equation (7-13) we note that N = A / A= 3L ‘/A,&. Expressing the exponentia1 of equation 

(7-16) in terms of L gives exp (-d Y”/ X / &T), which is to be compared to the exponential 

exp (-d/L) derived by the differential equation method. 

We are now ready to attack the original problem of finding the albedo. Say a beam of slow neutrons 
moving along the x axis from the left (negative x) hits the plane xe0. The probability that a neutron 
of the beam will make its first collision in dx at x is e -‘/+dx/ A). The probability of not being 

absorbed and escaping from here is p(x) N*. Hence the aIbedo.is: 

03 

p = 
0 

(7-17) 

A nonabsorbing medium (N -a ) would eventually return a11 neutrons and have an albedo of I. 

If we wish to know fi for an angle of incident e we are forced to drop the one-dimensional 

attack and the problem becomes more difficult. The result is: 
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m=i- 

Pte) = /G-vzs e 
(7-W 

This is inconsistent with the first result at 8 = 0, only because this sohticm aIlows for the fact that al- 
though 6 = 0 for the incident neutrons, they are not restricted to move along the r axis in the medium. 
The effect of allowing motion at angles to the z axis is to allow longer paths and hence more chance for 
absorption This makes fl slightly smaller. 

Suppose we wish to measure the albedo for slow neutrons on paraffin. A direct measurement would 
be difficult, for even if a collimated slow neutron beam can be made to impinge on some paraffin, neutrons 
e be coming off at all angles from al1 per the surface of the paraffin, and their detection wouId not 
be easy. A much simpler way to find the albedo is the folIowing. Place a thin-foil* slow neutron detector 
(Figure 46) somewhere in the middle of a mass of paraffin whose houndaries are far enough away from the 
foil that the pataffin can he considered infinite in extent. By means of some neutron source, we induce an 
activity in the foil. Cal1 this activity A. Next back the foil on one side with some cadmium, enough that 
the cadmium will &s&b pract;csJIy all the slow neutrons hitting it but not enough to distort the neutron 
flux field appreciably. &&sure’ the new activity in the detector foil. Call this activity B. Now the ratio 
(A/B) bears a simple relation to the aIbedo. To understand this, consider the number of neons Y hitting 
the foil each second in situation B. It is clear that for a uniform distribution of slow neutrons, the foil in 
case A woukl have *neutrons per second hitting it from each side and would have at least 2~ SIOW 
neutrons hitting it p& second. Actually, more than 2 z/ sIo+ neutrons wiIl hit the foil in case A, for some 
of the neutrons $&sing through the foil can return and pass through it again, there being no cadmium 
about to prevent this (see Figure 47). In fact, we can calculate the average number of times a neutron 
ahout to hit the foil will pass through it before it is eventually absorbed in the paraffin. Certainly the 
probability that this neutron wilI return through the foil is j.3, the albedo of the paraffin for slow neutrons. 
The probability that it will make at least two trips is 0 X par p2, andsoon.Thusthetotalnumberof 

passages through the foil for a neutron about to hit it is on the average: 

1 
1 +p+ps +... = - 

1-P 

Hence, there u&d be h, /(l-B) slow neutrons hitting the foil each second, rather than simpIy 2~ 

neutrons. From this it follows that: 

A 2u/( l-p, 
-= = f---; ,6 = 1-2(B/A) (7-19) 

B u 

In this manner a measurement of the two activities A and B suffices to determine the albedo. For paraffin, 
A/B is 12. From equation (7-19), it follows that the albedo for paraffin is p = 0.82. This type of measurement 
would not be feasible with poor absorbers of neutrons, for it has to be assumed that the diffusion length in 
the medium is small compared to the foil size, i.e., that most of the “reflection” takes place close to the 

foil. Further, if the detector is not thin, it acts as its own cadmium, SO to speak, and a co~ection must be 
made for the absorption in the foil. 

*By (L thin foil is meant one where there is little modlffcation of the neutron distribution due to 

the presence of the foil, i.e., one for whichCT&I8<<l, where Utot is the total cross section, R the 

numberor atoms per cm , and 8 the ioil thickness. 
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Figure 46. Measurement of albedo. 

j? NEUTRONS GET BACK 
FOR EACH NEUTPON INCIDENT 

DETECTOR FOIL 

.:. 

Figure 47. Multiple transmission in alkdo experiment. 
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PROBLEMS 

1. The diffusion length for thermal neutrons in water is 2.8 cm. Now the neutron distribution 

is hJaxwellian, so the average velocity is V =(2/G) V (where v is the veIocity in mva/2 = kT) 

orV= ST o calculate the mean free path for absorption (A ), we must use C. for neutrons 

with velocity V rather than v. Given 4 = 0331 barns for room temperature neutrons (v a,2200 m/see; 

see Figure 11, page 24), calculate ,i for V neutrons. What is the transport mean free path for 
thermal neutrons (Maxwell distribution) in water? 

2. If & is the average fraction (averaged over angles of incidence) of incident neutrons absorbed 
in the foil, find the relation between A/B and the albedo. 
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CHAPTER VIII 

NUCLEAR FISSION 

8.1 THE BWDZlKi E#ERGII% OF NUCLEI 

Before we proceed to take up the subject of fission, it is necessaq to understand the general 

nature of the forces that hold nuclei tog&her. For this purpose, tie should like to find an expression 
for the nuclear binding energy. As we have seen in Chapt-er III the nuclear mass is related to the 
biding energy. The ielation is simply: 

hi = (A - Z)bf,, + ZMl - (Binding energy /CT 03-1) 

with M the nuclear mass, M, the neutron mass, M, the proton mass, and A,2 the mass and atomic 

numbers, respectively. This relationship shows tha we m$ Check an)r conclusions about nuclear 
binding energies by comparison with nuclear masses. 

In the absence of exact, knowledge concerning the nuclear forces, the problem of finding the 

dependence ?f binding energy on 2 and A is a difficult one. We must examine our empirical knowledge 
about tinclei,.for implications concerning the nuclear forces or the b&&g Mgy; Our empirical 
iuloaedge iniziudes: 

Nuclear size and constancy of density of nuclear matter. 
Tendency of Z to be et#xal to A/2. 
Effect+ness of Coulo&b forces in making 2 lm than A/2. 

Rarity of nucld with even it and odd 2. 

Each of these factofs will be considered &pmely io its &ect on the nuclear binding energy. 

Coosider first the nudear size. From scatmring and orher experiments with heavy nuclei it is 
found that nuclear radii are proportional to A:/‘. In fact, 

R f 1.48 x 10-” A’/‘cm (8-2) 

fairly well fits the known data, although this formula does not mean much if applied to the very 
lightest nuclei. Fox the present purpose, rhe formula implies that the average density of constituent 
particles is about the same in 41 nuclei. It isquite likely that the density within a single nucleus 

does not vary mxuzh from one region within the eucleus to another. if a certain binding energy resuit- 
ing from nuclear forces is to be associated with two nuclear particles within the nucleus a given 
distance apart, it is clear from the foregoing that this bidding energy per unit volume of the nucleus 
is constant, inasmuch as the average distances between constituent particles are everywhere the 
s-e. We conclude, therefore, that the binding energy of nuclei is &sentially proportional to their 
volume or to A. Iti thms of the energy of the nucleus (the negative of the binding energy), we have 
then E 1”‘-a#$ where al is some positive coefficient which these considerations have not sufficed 

to determine..This is not complettily accurate, since we have failed to consider the fact rhat the 
nuclear constituents at the nuclear surface are not bound as strongly as particles inside. The number 
of such particles is proportional to the surface area so that we must subtract a number proportional 
to APP (or R “) from our previous estimate E 1. Thus: 

E 
1 

= -alA + asAw (8-3) 

63 
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The second consideration, the tendency of Z to be equal to A/2, should be taken into account. 

Since A is the total number of nuclear particles (neutrons plus protons) this tendency means that -there 
is a tendency for the number of protons to be the same as the number of neutrons. (While it is true 
that for heavy nuclei there are fewer protons than neutrons, we shall assume that this is due to the 

electrostatic repulsion between protons, which will be considered next. In other words, we are 
assuming that if it were nor for Coulomb forces between protons, there would be equal numbers of 
protons and neutrons in nuclei.) There are at least three types of nuclear forces within a nucleus: 
neutronproton, proton-proton, and neutron-neutron. In view of the equality of the number of protoas ad 
neutrons in nuclei, the last two types of forces must be of the same order of magnitude. For if the 
proton-proton forces were stronger, nuclei with more protons than neutrons would tend to be more strougIy 
bound, hence more stable than those with equal numbers of each. If the energy of isobars (s-e A, 
different 2) were plotted against Z, we should get a curve symmetric about Z - A/2, as nuclei with Z 
protons and A-Z neutrons would have the same energy as those with Z neutrons and (A-Z protons, 
assuming equality of neutron-neutron and proton~lkoton forces. The isobar curve as show? in Figure 48 
shows a minimum at 2 = A/2 since nuclei for which Z = A/2 are the most stable. Thus E, tbe energy 
associated with the departure from equality in the number of protons and neutrons, must be proportional 
to some even power of Z-(A/2). For simplicity, consider that in the neighborhood of Z = A/2, the energy 
Es is proportional to the square of Z-(A/2). To see what the “dimensions” of the coefficient should be, 

consider two nuclei with the same value for Z/A, one having an A twice the other, so that both nudei have 

t 

E2 

Figure 48. Quadratic shape of energy surface. 
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the same fractional excess of neutrons over protons, but one has twice as many particles. The 
larger nucleus will have twice the E, if we associate with each extra or unpaired particle a certain 

fixed energy. It follows then that E, should be proportional ro A, or: 

z 12 
(A-2)2 

E,“asA(----) =aao-2---- 
A 2 A 

(S-4) 

The effect of Coulomb forces between protons can be taken into account by finding the energy 
Es associated with the Z protons being distributed in a sphere of radius IL This is a simple problem 
in eIectrostatics if we consider the charge uniformly distributed throughout the sphere. In this case, 
the potential energy of a charge Ze uniformly distributed throughout a sphere of radius R is just (3/5) 
(Ze)‘h in ergs (e in esu). Substituting for R from equation (8-l) and for “e” and then converting 
ergs to mass units, the Coulomb energy becomes: 

Ea = 0.000627 Z2/Aw (8-5) 

Our last consideration -concerns the dependence of the binding energy on the even or odd numbers 
of protons and neutrons. It has been found empirically that there are few stable nuclei with even atomic 
weight A and odd atomic number Z. In fact, it can be said that the most stable nuclei tend to have both 
Z and A-Z even. Slightly less stability occurs in the cases 2 odd, A-Z even, and Z even, ‘A-Z odd. Clearly 
forces between nuclear constituents must, therefore, show a dependence on whether an even or odd 
number of neutrons and protons are about and so must the biding energy, An explanation has been 
advanced based on the idea that constituents tend to fill the nucleus’ lowest energy levels and that 
strong forces exist between the pairs of neutrons or protons that can fill the same level. It has been 
empirically determined that E, = 6 can be assigned as a correction term to our expression for the 

binding energy on the following basis (8 in mass units): 

6 = 0 for A odd 

6 = -0.036/A ‘I’ for A even, Z even 
8 = +0.036/As/4 for A even, Z odd 

(8-a 

Combining the various terms, equations (8-3) to (8-6) and substituting in equation (8-l), the nutlear 
mass (in mass units): 

M= 1.00893 A - 0.00081 Z - a, A + a2 A ‘Ia + aa 
(4 - z) 

A z2 +s + 0.000627- 
A l/a 

We must now evaluate the coefficients ar, a2, and as. First, as is evaluated by setting dM/dZ = 0. The 

resulting equation between Z and A, 

z, = 
0.00081 + a3 

2aa + 0.001254A2/9 * 

A 
(g-7) 

is one for which M is a minimum and, therefore, gives the stablest values of Z for any A. Fitting this 

equation to the known stable isotopes @es a best value for as of 0.083 in mass units. The other 

constants, a, and a,, are determined by fitting the equation for M to the known data for nuclear masses, 
.with the resulting values a1 = 0.00504 and a2 = 0.014. Hence the complete expression for the nuclear 

mass as a function of A and Z is: 

M(A,Z) = 0.9389 A - 0.0008lZ + O.O14A* + 0.083 + 0.000627 
-2-d 

% A l/3 (8-N 



86 AECD - 2664 

This formula cao be used for calculation of the binding energies of neutrons to isotopes of 

uranium. This information will be very closely connected with the ability of slow neutrons to fission 
these various isotopes, as we shall see. Let us calculate the binding energy of a neutron to U235. 

U ms : h4 = 235.11240 [from equation (8-8)1 
Neutron: M = 1.00893 

SMI = 236. I2133 

Uf%-M = - 236.11401 [also equation (8-S)] 

Binding energy = 0.00732 mass units or 6.81 Mev 

Similarly the binding energies of aeutrons to Uras, Uasr, and Ums wokld be 5.51, 6.56, and 5.31 Mev, 

respectively. The alternation of the magnitudes of the binding energies comes from the factor 6. 
This alternation is superposed on the regular variation of M(A,Z) with A and Z given by the other 
five tetms of equation (8-8). 

Additional examples of this type are given in the problems at the end of the chapter. 

8.2 THE FISSION PROCESS - ENERGY CONSIDERATIONS 

The packing fraction curve (see Section 3.2 and Figure 15) shows that in the region of uranium, 
the packing fraction is of the order 0.0006, whereas for middle-weight nuclei it isof the order -0.0007. 
This implies that the heavy nuclei are not energetically stable against breaking into two middle-sized 
nuclei. Examining this more closely, we see that the energy that would be released in such a splitting 

is M(A,Z) - 2M(A/2, Z/2). If this is positive, the splitting is energetically possible. This difference 
can be written in terms of the packing fractions: 

AZ A 
M( A,Z) -A _ M(T 7) - ? 

A A 1 (8-9) 

2 

or A times the difference in the packing fractions. Thus, when the difference between the packing 
fractions is positive, then fission is energetically possible. It is to be noted that the packing fraction 
difference does not give the enerw released in a fission process. In Figure 49, the curve of N versus 
Z is shown (see also Figure 12). The transition from P to Q on the diagram results in an energy release 
proportional to the packing fraction difference. Actually in fission the end state is on the curve of 

stable isotopes at point R in Figure 49. Since R is at a lower mass point, the energy release in fission 
is greaterthan that given in equation (8-9). For example, if A is 240, then A/2 is 120; Z, is 93.74, 
equation (8-7), for A = 240, and Z,/2 is then 46.87. Using A/2 = 120 and the formula for Z, gives 

the stable Z, as 51.15, or about 4 units from Z&/2. (That is Z,/2 < Z,+.) This means that about 

four beta particles will be emitted per fragment after fission. 

From the packing fraction curves, it appears that fission is exoergic for all nuclei with A greater 

than 100. Why, then, is fission such a rare process? Consider a nucleus that breaks into two fission 
fragments. Plot the energy of the nucleus, i.e., the fragments, as a function of the distance between 

the two parts. At infinite separation, the energy is taken to be zero. When the fragments are combined 
(r = 0), we know from measurements that the energy is about 200 Mev or greater. What about points 
between r = 0 and infinity? Up to a distance of the order of the diameter of the fragments, it is the 
Coulomb energy between the particles alone that contributes to the energy between particles, since 
that is the only force acting between the fragments. This energy is (Ze/2) “/r. When t is less than 

the diameter of the fragments, the energy must change in such a way that it becomes the fission energy 
(200 Mev) at r = 0. If (Ze/2)2/r is smaller than, equal to, or greater than the fission energy at r = 
diameter of the fragments, then there are three corresponding transition curves, Figure 50, which can 
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Figure 49. Energy release on fission. 
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Figure 50. Transition curves for fission fragments. 
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be drawn to connect the Coulomb potential curve to the known energy at r = 0. Presumably stable 

nuclei with A > 103 ate represented by curves of the type I, with barrier heights of the order of 
50 Mev, since the Coulomb potential at r = nuclear diameter is greater than the fission energy. 

Presumably uranium would be represented by a curve like II, where the barrier is about 6 Mev. 
Substances whose energy cme would be given by III would naturaIly not exist for long. This latter 

curve presumably represents nonexisting transuranics.* 

Consider r = B to be of the order of the diameter of a fission fragment. Then from equation (82), 

B = 2 x 1.48 x 10-1s(A/2)W. Using this value for B, we can plot Eu(the Coulomb potential at r = B) 

as a function of mass number A, Figure 51. Similarly we can draw a curve E &, the excess of mass 
of a pare&nucleus of mass number 4 over.+.at_of its two fragments (i.e, the fission energy). This .._... 
latter curve becomes negative below A = 85 and crosses the curve for Es at about A = 250. From 

such a graph, one can get E, - E ~ for any A. The quantity Es - E ~ is a measure of the height of 

the energy barrier against fission. 

0 
a .I I 

0 50 100 150 2fTj@ 250 A 

Figure 51. Energy b&ier againsr fission. 

l For asoueuhrtrora dekileddisassim of the trsaeitlap cur-m, *=I tbenobr, Wheelerpaper, 

Rip. nav. &3:42f3(lws). 
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It is possible, of course, to investigate more precisely the shape of the energy versus fragment 
separation curve near r = 0 if some specific model is assumed. Considering the Bohr liquid drop 
model, we assume that the original nucleus is a sphere and then calculate the change in energy for 
a small deformation. Let us further ass.ume that the sphere, in beginning to split, deforms in a very 
simple manner, namely, it stretches slightly in one direction and flattens our perpendicularly to 

this direction, thus becoming an ellipsoid. If we assume that the sphere does not change its volume 
on becoming an ellipsoid, and this is reasonable in view of the fact that all nuclei tend to maintain 
the same density of nuclear particles, the change in the energy of the nucleus upon deformation will 
be due to only two of the the five factors discussed in the last section. First, the surfoce.inergy 
will tend to increase with deformation because more surface will be exposed. Second, the 
eEectrostatic energy will decrease because the repelling charges will be effectively separated 

to some extent. Thus we have at least two energies changing in opposite ways with deformation of 
a spherical nucleus. The surface or capillary energy is proportional to the surface area or A”‘, 
and the electrostatic energy is proportional to Z aA ‘Ia, which is * A s/s. The latter energy becomes 
more important for heavy nuclei so that for heavy nuclei it is likely that the energy of a nucleus tends 
to decrease with deformation, making a spherical nucleus unstable. The opposite is true for light 
nuclei. From this picture, it is in heavy nuclei that we would expect fission. 

Let us investigate in some detail the change of energy of a spherical nucleus upon distortion. 
The surface energy is proportional to the surface area, which for an ellipsoid is: 

2nb= + 21z a% 

4ciF 
arcos (b/a) 

a and h are the semimajor and semiminor axes, respective1 . (Note that for b = a this reduces to 

47rb ‘, since arcos (b/a) 2 atctan (GET /h 2 d/b.) The electrostatic energy of a 
charge distributed throughout the volume of an ellipsoid can be shown to be: 

3 Zae2 

lo &‘-b= 
log a+457 

“8-m 
(This reduces to (S/5) (2*/r) for b = a = r.) Now consider a sphere of original radius R. If it is 

stretched in one directiqthen a = R (1 +&). The minor axis b changes so as to keep the volume of 

the sphere constant, i.e., (4~/3 ab * =(4n/3)R ‘, from which b z: R/-Substituting for a and b 
in the two energy expressions above and developing the results in powers of 6, we find the 
electrostatic energy to be: 

z i%B l-29+.... 
5 R 5 1 

and the surface energy to be: 

4mR= 1 +$ L= + . . . . 1 
It is to be noted that the fir+ terms in each of these equations are simply the electrostatic energy 
and surface area, respectively, of the undistorted sphere, while the second terms are the cortec- 

‘- tions for distortion, The correction term for the electrostatic energy is negative, indicating a 
deaease with distortion; that for the surface area is positive, corresponding to an increase in area. 
Using the proper coefficients for these energies from the formula for M(A,Z), equation (8-8), the 

excess in energy of the ellipsoid over the sphere is: 

- +(0.000627) %a 
I 



The condition for stability against deformation is that the bracket be positive, that is: 

p 44.7 (8-10) 

For uranium Z’/A is 36, while for lower elements its value is even smaller, indicating that the 
foregoing condition for instability is too stringent. 

Actually, instability will occur for lower values of Z a/A than the limiting value given by 

equation (8-10). For potential curves of the shape shown in Figure 52, the barrier is rather trans- 
parent, and one could expect appreciable spontaneous fission. The probability of leakage through 
the barrier will be finite, so that the decay constant with respect to fission will not be zero. Even 
for U ms, there are * 20 fissions per gram per hour spontaneously (corresponding to a “fission half- 

life” of about 10 m years), so that for heavier atoms this may soon become a prominent phenomenon. 

Ourprincipal interest is not in spontaneous fissions but in fissions brought about by neutrons. 

Neutrons can cause fissions by contributing their kinetic energy and their binding energy to the 
nucleus. This energy is at least 5 or 6 Mev (the binding energy of the neutron) and may raise the 
energy of the nucleus high enough within the barrier for a fission to take place before the excess 
energy is lost by gamma radiation. Because of the fact that the binding energy of neutrons to nuclei 
with an odd number of neutrons is larger than it is to those with an even number of neutror)s (see 
.equation (8-6)) it is reasonable to expect fission for thermal neutrons to be more prevalent for those 
nuclei with an odd number of neutrons. This is confirmed by experiment. U a9B is not fissioned by 

thermal neutrons whereas U ms is. Moreover the other “fissionable” materials, Usrs and Puma, each 
have an odd number of neutrons. From facts such as these and photofission thresholds, one can 
estimate that for uranium the height of the fission barrier is of the order of 5 Mev. 

SHALLOW TROUGH (LOW BARRIER) 

‘ 
0 

I+ 

Figure 52. Possible potential barrier in spontaneous fission. 
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Figure 53. Fission product yield for U 235. 
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It is to be kept in mind that in the consideration of the competition of fission with other pro- 
cesses, it is not sufficient to consider energies alone, as we have done. For fission, one must 
not only have the energy rise to the top of the barrier, but is is also necessary that this energy be 
concentrated in the proper modes of motion for fission. This may take some time, so that competing 
processes may occur at the expense of fission. Since the number of modes, and hence of useless 
nonfission modes, increases with excitation energy, it may, therefore, be very likely that the reason 
photofission with * lOO-Mev gamma rays on lower nuclei has not been observed is because the 
energy does not get concentrated in a proper mode before it is lost by some other way than fission. 

8.3 THE FISSION PROCESS-RESULTING PARTICLES 

When a nucleus fissions there are, in addition to the two fragments, a number of other particles 
observed. They are neutrons, beta particles, gamma rays, and often fast alpha particles. Some 
of these are observed to accompany the fission process, and others are emitted at various times 
following the fissioning itself. 

The fission fragments themselves have been studied in great detail*. The distribution of 
fission fragments for Uz3s as a function of mass, shown in Figure 53, consists of two nearly 
identical pe&s with maxima at mass numbers 96 and 140. If U23s is fissioned by a neutron, and 
in the course of fissioning two neutrons are emitted, then the mass number corresponding to 

e+o~ splitting would be A = 117. The observed yield for equal splitting (A = 117) is only O.Ol%, 

whereas the maximum yields (at A = 96 and 140) are about 6.5%. In each case, the fission fragment 
formed is unstable (see Figure 49) because of the excess of neutrons. For example, the nucleus 
with mass number 140, yield 6.3%, finishes up as stable Ce r4’ after a sequence of beta decays: 

xe140- cs*40 -Ba140-- 
12.86 La 

140-Ce140 

(Z=a4) lBS short (8-11) 

A large number of such “fission product chains” have been identified. 

It should be noted that the distribution of masses also gives the distribution of the relative 
kinetic energies of fission fragments. This follows from the conservation of momentum. If E. and 
E, are the kinetic energies of the fission fragments M_ and M-,then conservation of momentz- 
requires that M,VI = M, Q, or r/2M,E 1 = - T:us M ?M = m,so that the heavier - ----. --- 

of a.pair of fission fragments has the smaller k!nztic energy.rTh: absolcte &lue of the energy E 1 

corresponding to the mass M, follows from the fact that the total energy E 1 + Es is a constant 

(* 160 Mev) and the total mass M, + M, is a constant (-234 m.u.). 

The neutrons emitted in fission are classed as either ‘*prompt” or “delayed”. The term 
“prompt ” means that the neutrons leave the fission fragment after its formation in times shorter 
than we can measure. -4n estimate of lo-” second can be made by considering the fission prod- 

uct as the splitting of a drop. The final fragments are not of spherical shape (Figure 54), so there 
will be a considerable vibrational energy associated with oscillations about the equilibrium 
(spherical) shape of the fragment, This excitation energy may be sufficient to evaporate a neutron, 

especially since neutron binding energies in fission fragments are small because of the excess 
of neutrons. For example, assume that U 236 is made to fission by a neutron, and two fragments 

with A = 118 and 2, = 46 appear. Using the formula for M(A,Z), equation (8-8), one can calculate 
binding energies for various nuclei of weight A = 118: 

*See .Nuclei Formed in Fission: Decay Characteristics, Fission Yields and Chain Relationships' 
issued by the Plutonium Project in J. Am. Chem. Soe. OS: 24ll(lS4?3) and lb;. Mod. phys. 18:513(1946). 
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Figure 54. Fission of a liquid drop. 

z 
Neutron 

Binding 
Energy 
(Mev) 

44 45 46 47 48 49 50 

2.5 6.8 3.6 7.8 4.7 9.0 5.8 

(where 2 = 50 is the stable value for Z if A = 118). Thus, neutrons may be lightly bound to fission 

fragments. Whenever neutron emission is energetically possible, neutron emission is likely, be- 
cause of the absence of a barrier for neutrons. As a matter of fact. one could conclude fromobser- 
vations that considerable excitation energy must be present in the fragments, because from one 
to three neutrons are emitted per fission in the tase of U235. 

The energies of the neutrons that come off at fission are given in the distribution curve in 
Figure 55. In the center of gravity system of neutron and fission fragment, the neutron energy 
distribution would be approximately Maxwellian, with a “temperature” corresponding to the exci- 
tation of the fragment. To get the theoretical curve for the distribution in the laboratory system, 
one would have to take account of the motion of the fission fragment and the dependence of emission 
probability on neutron energy. 

In addition to these prompt neutrons about 1% are delayed. To explain the emission of delayed 

neutrons, consider (Figure 56) a fragment A, which undergoes a p disintegration to a nucleus B. 
Usually this disintegration will go to the ground state of B, but occasionally the nucleus B may 

end up in an excited state wgth excitation energy greather than B. E., the binding energy of.a 
neutron. In such a case, neutron emission becomes quite likely. Such neutrons would come off very 



94: 
A-D - Z664 

f 

NEUTRONS 
PER MEV 

. 

HERE) 
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Figure 56. Mechanism of delayed neutron emission. 
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quickly after the pdecay and wouId, therefore, show decay periods that correspond to the periods 
of the disintegration of A to the excited state of B. 

The delayed neutron periods that have been observed and their yields are listed in Table 4. 
The first two periods are rather well verified and have been identified to be emitted by Kr*’ and 
Xe la7, respectively +. The shortest period is not yet definitely confirmed. t 

TABLE 4-DELAYED NEUTRONS FROM U2” [Phys. Rev. 74:1330(1948)1 f. 

HALF-LIFE (SEC) RELATIVE INTENSITY DELAYED NEUTRONS 

PER PROMPT NEUTRON. (%) 

55.3 * 0.7 0.054 a.025 

22.4 f 0.4 0.294 0.166 

5.5 f 0.3 0.297 0.213 

1.7 f 0.2 0.279 0.241 

0.36 f 0.07 0.076 0.085 

(0.0044 f 0.0007 7) (Q. 02 1 

8.4 THE FISSION PROCESS -GENERAL NATURE OF.CROSS SECTION 

The cross sections for capture and fission for the isotopes of uranium and plutonium that have 
so far been investigated show a rather complicated dependence on energy. For some isotopes, the 
(n,f) cross section decreases with neutron energy, whereas for others it increases. Some isotopes 
show an (n,f) threshold, whereas some have an (n,f) cross section that follows the I/v law at low 
energies. Pronounced resonances for capture are apparent at low neutron energies in isotopes like 
U238. The resonances become less striking at higher energies, where they tend to beconx smeared 

Out. 

l Phy.¶. Rev. 72: 346 (147). 

-+hys. Rev. 74Z 1330 (lQ48). 

+&,ilar periods have been found for the delayed neutrons in plutonium fission. See Phys. Rev.PS:667 
and 570 (1947). The per cent of delayed neutrons per prompt PeUtrOll IS taken PrOa, Pays. Rev. 76:lll (1948). 
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PROBLEMS 

1. Substituting the correct value for as into equation (8-7) gives a relation between Z, and 
A. Compare points predicted by this equationwith the corresponding values for about ten known 

stable isotopes. Make the comparison graphical. 

2. Dempster, in Physical Review 53:870 (1938), g ivts a curve of the packing fraction vs. 
the mass number. Using equation (8+), plot packing.fractions expected “theoretically” along 

with Dempster’s experimental curve and note the degree of agreement. 

3. Calculate the binding energies of neutrons toTh232,Au107, Sml’*, ln116, and Mns6. Use 
the formula for M(A,Z), as was done at the end of Section 8.1. Sufficiently accurate experiaenta 1 
data for nuclear masses (for such an application as this) exist only for the lightest nuclei. 

, . 

4. At what atomic number is instability reached according to the inequality of equation (8-lo)? 
Use the expression for Z,, the proper value of Z for a nucleus of weight A, that has been developed 

in equation (8-7). 

5. Derive an, energy distribution curve for fission neutrons, assuming a velocity V for the 
fission fragment and a Maxwell distribution of energies in the center of gravity system. Also assume 

that the probability of neutron escape is proportional to their velocity. 


