International Society of Exposure Sciences –
International Society for Environmental Epidemiology
(ISES-ISEE 2018)

26 to 30 August, 2018

Two (out of many) Presentations of Interest
Topics and Credits

• *The Role of Occupational Studies in Expanding our Knowledge* - Paul A. Demers, PhD, Occupational Cancer Research Center

The Role of Occupational Studies

• International Agency for Research on Cancer (IARC) is a specialized agency of the United Nations.

• Associated with the World Health Organization (WHO)

• IARC conceived a program in 1970 to provide advice on environmental carcinogens. Factors include...
 – Chemicals and complex mixtures
 – Physical and biological agents
 – Occupational, environmental, lifestyle exposures
The Role of Occupational Studies, *cont’d*

- IARC scientific working groups are a technical resource to national agencies to prevent exposure to potential carcinogens

 - Volume 1 - Some Inorganic Substances, Chlorinated Hydrocarbons, Aromatic Amines, N-Nitroso Compounds, and Natural Products (e.g., beryllium, carbon tetrachloride, cycasin, dihydrosafrole, *etc.*).
 - Volume 123 (Pending) - Nitrobenzenes

- LARC’s classifications contribute to prevention by:
 - Stimulating regulations, guidelines, and policies (occupational Exposure Limits, labeling, toxic use reduction...)
 - Encouraging voluntary actions by employers and/or workers
 - Raising awareness, but...
The Role of Occupational Studies, *cont’d*

IARC Carcinogen Categories – 1006 agents studied in total

- **Group 1**: Carcinogenic in humans (120 agents)
 - *Almost always requires strong human (epidemiologic) evidence*
 - *Examples: Formaldehyde, Cr VI compounds, Asbestos, Erionite, Mustard Gas*

- **Group 2A**: Probably carcinogenic in humans (82 agents)
 - *Generally limited human and strong animal evidence*
 - *Examples: Methylene Chloride, Styrene, DDT, Nitrogen Mustard*

- **Group 2B**: Possibly carcinogenic in humans (302 agents)
 - *Generally limited human or strong animal evidence*
 - *Examples: Nitromethane, Heptachlor, Disperse Blue 1*

- **Group 3**: Not classifiable (501 agents)
 - *Generally inadequate evidence in humans & limited/inadequate in animals*
 - *Examples: Coffee/Caffeine, Saccharin, Xylene, Isopropyl Alcohol*

- **Group 4**: Evidence of a lack of carcinogenicity in both humans & animals
 - *Only 1 agent (caprolactam 1999)*

504 Agents vs. 502 Agents
Despite at least some self-selection for carcinogens
The Role of Occupational Studies, *cont’d*

- Approximately 2/3 of IARC agents evaluated relate to Occupational or Semi-Occupational Exposures.

- Occupational Exposures Typically Entail:
 - Higher exposure frequency
 - Higher exposure levels
 - Exposed populations easy to identify
 - Exposures easy to measure
 - Healthy adults typically
 - Inhalation is the usual exposure route
The Role of Occupational Studies, cont’d

Occupational Studies Valuable Because:

- Most known/suspect carcinogens are found in the workplace.
- Past studies have played a key role in our understanding of cancer.
 - Good exposure records in industry
 - Well defined populations; easily tracked and followed
 - Higher exposure levels and frequencies
 - Single or a couple agents involved
- Occupational carcinogens may have a broad impact beyond the workplace:
 - Can be released into the environment
 - Present in food, water, and pharmaceuticals
 - Present in consumer goods
 - Take-home toxics
The Role of Occupational Studies, *cont’d*

- Approximately 1/3 of IARC agents evaluated relate to Environmental or General Population Exposures.

- Environmental Exposures Typically:
 - Less frequent exposures
 - Lower exposure levels
 - Challenging to identify exposed population
 - Challenging to measure exposures
 - General populations – elderly, young, varied health status
 - Multiple exposure routes – inhalation, ingestion, skin contact, etc.
The Role of Occupational Studies, *cont’d*

Environmental Studies Valuable For:

- Unique exposures not usually found in the workplace
 - Second hand tobacco smoke
 - Erionite

- Susceptible population at risk is outside the workplace
 - Very old or young
 - Genetically predisposed populations
 - Population susceptible due to illness, social disparity, or other conditions

- Relative risks are small and only large exposed populations provide adequate statistical power to discern an effect.

- Circumstances when occupational studies are not possible.
The Role of Occupational Studies, cont’d

Author’s Conclusions:

• Both Occupational and Environmental Studies have applications to industrial hygiene depending on the agent, circumstances, populations, etc.

• Occupational Studies were more common in the past by a factor of 2:1

• Occupational Studies becoming less common now
 – Employers can be unwilling to allow investigators access to a plant
 – Fear of liability and potentially admitting wrong-doing
 – Decline of a sense of the “social contract” and working for the common good
 – Decline in union representation in the workplace

• Environmental and population studies may now assume a greater role in providing information about carcinogens
The Role of Occupational Studies, conclusion

Discussion? Questions?
Estimating Personal Exposures with a Multi-Hazard Sensor Network

- Personal monitoring has been preferred since 1960’s for evaluating occupational exposures. But...
- Personal monitoring can have disadvantages:
 - Expense
 - Labor intensive; and now fewer dedicated IH professionals/departments
 - Burdensome to workers (maybe...)
 - Potentially low sample size (result of first two factors?)
- Area Sampling *may* help to address shortfalls by combining:
 - Hazard maps from a wireless sensor network (WSN)
 - Worker location information
 - Continuous real-time monitoring using *relatively low cost sensors*
 - One data point every 5 minutes
 - More robust sample size
 - Ability to better evaluate peak, ceiling, and short-term exposures
Estimating Personal Exposures – The Hardware

The Workplace
• Heavy vehicle manufacturing facility (~800,000 sq. feet (?))
• Cutting, welding, machining, grinding and abrasive blasting
• Low Ceilings
 – Sound Reflective Surfaces? Reverberant Environment?
 – Airflow/Dilution Ventilation Possibly Constrained?

Spatially Optimized 40 Node WSN (Area Monitoring)
• Particulate Matter (PM – Sharps GP dust sensor)
• Carbon Monoxide (Alphasense CO-B4)
• Ozone + NO2 (Alphasense OX-B431)
• Noise (Custom adapted sensor)

Study Staff Wore Direct Reading Instruments (DRI) as a Surrogate for Worker Personal Exposures
Estimating Personal Exposures - Results

• Three Field Campaigns Completed

• 147 to 212 Sets of Estimates Derived from the WSN

• DRI Result Ranges:
 – PM, 0.110 to 0.990 mg/m³ (ACGIH TLV – 3 mg/m³ Resp.; 10 mg/m³ Inhal.)
 – CO, 2 to 17 ppm (ACGIH TLV-TWA – 25 ppm)
 – Ozone, 0 to 57 ppb (ACGIH TLV-TWA “Heavy Work” – 50 ppb)
 – Noise, 71 to 89 dbA (OSHA PEL – 90 dbA; ACGIH TLV – 85dbA)

• WSN (area) results were compared to DRI (personal) results to determine correlation between the two...
Estimating Personal Exposures - Conclusions

WSN Measurements that were within 50% of the DRI Measurements:
- Noise (100%)
- CO (90%)
- PM (59%)
- Ozone (0%)

Authors’ Conclusions:

“Our WSN built with low-cost sensors was able to map occupational hazards with a high degree of spatial and temporal resolution.” And...

“Combined with . . . location information, we have demonstrated that WSNs . . . can generate personal estimates of occupational exposures that, for some hazards, compare favorably to personal sampling.”
Estimating Personal Exposures with a Multi-Hazard Sensor Network

Discussion? Questions?
In Closing....

Full credit and appreciation goes to the authors indicated for their research, thoughts and study outcomes.

Special thanks to Annette Bright and Shannon Lindey for enhancement to the presentation.

Special thanks to Kevin Dressman and Tony Pierpoint for approving the training.

Any errors or miss-representations in the presentation are solely my own...
“I have learned much from my teachers, more from my colleagues, and the most from my students.”

-Rabbi Chanina in the Talmud